

Xen and Intrusion Detection &
Recovery with Linux

Bill Broadley
<bill@cse.ucdavis.edu>
Computational Science

and Engineering
UC Davis

Aug 20th, 2007
LUGOD

6:30-9:00pm

Threats

 Users
 Programmers
 Vendors
 Poor programming languages
 Applications
 Operating systems.

Who can you trust?

 If you don't have physical security?
 If you do have physical security?
 Logs? Auditing?
 Users?
 OS binaries? Application binaries?
 The file system?
 The network? Kernel?

Privilege Escalation

 What boundaries can not be broken?
 Non-user -> user?
 user -> root?
 Application -> root?
 root -> kernel?
 DomU -> Dom0 (para)?
 DomU -> Dom0 (HVM)?

Ideal world?

 Perfect physical security
 No network
 No users
 No untrusted binaries
 Trusted kernel
 Logs and auditing you can trust.

Realistic world

 Simple environment (kernel+sshd)
 Private network
 Maintain the high ground.
 Trustworthy binaries
 Trustworthy kernel
 No 3rd party applications
 All users, applications, and untrustworthy

kernels on a virtual machine

Attack model

 Any open port (buffer overflows)
 Any user account (web or shell)
 Escalate any privileges
 Hide tracks (including tripwire)
 Install back doors
 Collect any valuable info (identity, CC,...)
 Collect recon for additional attacks

Old school obvious signs of
compromise

 Unusually full disks and/or busy networks.
 Complaints from other networks you are

attacking/scanning
 Complaints from other networks that you

are spamming
 Defaced web pages

Often ego motivated.
Getting much less common

New signs of compromise
 Ever more invasive hackers make a mistake

and break something

 Audit, maintenance, or upgrades uncover
compromise, often months after the
compromise

 Giant list of user/pass, ss numbers, or credit
card numbers appear.

 Embarrassing press releases

 The scariest of all..... nothing.

Attackers are more organized, more
professional, and are often profit instead of ego
motivated.

Old school intrusion detection

 ps, lsof, /proc
 local syslog
 tripwire – (usually local/insecure), hacker

scripts go over updating tripwire
databases and/or crafting replacements
that give the all clear

 The truly paranoid do tripwire “right”
which requires downtime and is labor
intensive. Rare.

Old school counter ID

rootkits (hack ps, lsof, ls, du, etc.)
strange filenames
obscure directories
zero wtmp/utmp/syslog
bastion hosts
known bad checksums (NEVER current)
chkrootkit, rkhunter
Anti-ID forensics to discover how to update
database.

Current anti-ID

 Encryption (no more sniffing hackers)
 Anonymous networks (tor)
 P2P bot nets for DoS, Phishing, and

spamming.
 Kernel rootkits (solaris, linux, *bsd, and

windows) with or without kernel modules.
 Application rootkits (attacked in memory)
 Port knocker based backdoors.

Kernel rootkits
 Hard to detect from inside. Removes common

methods of discovery like using trusted bins.

 Does NOT require modules to be enabled.

 OS bootstrap process is very complex, any
binary, module, or script can compromise
kernel.

 /sbin/init often attacked, post boot checksums
will reflect the original checksum

 Very effective at covering back doors, sniffers,
promiscuous mode, trojans, and port knockers.

 Can even hide parts of files.

 Often readdir (get next file) will not work, but
open and exec work with exact name

Kernel rootkits part II

 Will happily lie to ps, du, top, lsof, and tripwire

 Open or stat will return uncompromised version

 Exec will result in compromised version being
run

 Extremely common, current traditional rootkits
are becoming hard to find.

 Watching the low hanging fruit (ps, du, ls,
nmap, lsof and friends) no longer effective. Can
be triggered from 1000's of files.

Rootkits Part III

 First gen used kernel module and insmod,
played with the syscall table.

 2nd gen access /dev/kmem, doesn't
require modules, visible to /proc

 3rd gen tweaks lower level kernel
structures like the VFS layer, harder to
detect, installs via /dev/mem

 4th generation virtualizes the kernel, very
hard to detect and survives “reboots and
reinstalls”

Current ID

 Dom0 monitoring DomU
 Logical volumes (snapshots)
 Off host logging
 Maintaining the high ground (private

networks, dom0, secure simple hosts, and
a trusted boot sequence)

 Known good checksums (dramatically
better than known bad.)

 Vendor supplied checksums/signatures.

Next gen anti-ID

 Get ring 0, take the high ground,
virtualize the system

 Nasty tricks:
 Pretend to turn off, but instead sleep
 maintain backdoor system even on a power

cycle with full reinstall from trusted media
 Fake BIOS and POST
 Mostly undetectable from the domU (tricky

timing might help in some cases).

Next gen ID

 Trusted boot sequence (BIOS -> boot
loadloader -> kernel -> modules)

 Hardware support (IBM's TPM chip)
 Vendor signed binaries and modules
 Improvement in practices like actually

pulling the plug before installs.
 Virtualize first.
 Careful LED watching (sleep vs suspend)
 Xebek – Honeypot tool

Xebek

 Whitehat rootkit for Xen.
 Designed for high interaction honeypots
 Excellent at crossing the semantic gap
 Intercepts system calls and keystrokes
 Does not use network stack for logging
 Dom0 does not have to be network visible
 Requires kernel source patch (whitehat)

End of overview

 Discussion?
 Everyone understand?

Details, tools, and examples

 Step by step analysis of compromised
system

 Example tools
 Example backdoors
 Example trojans
 CDR – Checksums Done Right
 Dom0 vs DomU

The basics: nmap

Note the explicit list of ports, 4
services running (great)

The basics: lsof

Looks sane, network connections look
reasonable, can we trust the COMMAND? Lets
check to see if we should trust PID 3532.

The basics: /proc

Exe points where expected (and can even recover
deleted binaries) FD = file handles, no open files to
strange places like /var/tmp/.foo/sniffer
envirion and cwd look reasonable. Is /usr/sbin/sshd valid?

Binary verification (old way)

5

redhat binary verify

Who are we trusting?

Binary verification part II

 Binary does not verify
 Extremely suspicious
 Painful to verify (someone should

automate this)
 Who are we trusting here?
 Looks like a functional trojan
 What evil could it do?
 How would we find out?

lsof part II

lsof part III

 No strange libraries
 No strange sockets
 No hint of anything strange

Basics: strace

Looks good.... mostly.

Logs

Not a good sign.

Logs part II
Sometimes you get lucky:

I wonder if that works here:

Hrm, what would the echo | nc commands be for?

ssh part II
Lets try that exactly:

Bad...

Port knocking

 Can't be detected by lsof

 Ignores host firewalls (why do we have host
firewalls again?)

 Breaks the mapping between ports and
processes (making finding the culprit much
harder).

 Can be used to start, stop, or trigger any
sequence of packets (UDP or TCP), hitting a
sequence of ports, optionally included or
excluded with fin, syn, rst, psh, ack or urg flags.

Dom0 ID Advantages

 Relatively straight forward to secure (no
applications, users, or external network)

 Very hard to escape from a
paravirtualized domU

 Even harder to escape from a hardware
virtualized domU

 Can transparently snapshot domU
storage and can't be lied to about the FS.

Dom0 ID Disadvantages

 Semantic GAP is substantial

 DomU sees TCP connections, files, sessions,
processes.

 Dom0 sees packets, blocks, and raw memory.
 Tools are starting to bridge the gap

 New Xen-3.1 API
 subvirt (google for king06-1.pdf)
 Xebek (xen aware sebek descendant)

 Can't easily view DomU kernel structures,
processes, data structures, or kernel memory.

Checksum pitfalls

 Need to trust kernel, libraries, and binaries.

 Patching is arduous (auditing changes)

 Need to trust (often local) database

 Database is hard to securely update (is it read
only or not?)

 System needs to be secure in the first place.
scans can compromise unboxed machines
before the first patch finishes.

 Checksums are a moving target

Checksums Done Right
 Known good database (not based on machines

preexisting state)

 Run with a trustworthy kernel, libraries,
binaries, and database

 With virtualization and snapshots, checksums
can be done with zero downtime

 Checksum process invisible to users and
attackers.

 LVM snapshots are the low hanging fruit for
crossing the semantic gap.

 Patching is easy, less effort helps insure things
are done securely.

CDR (Checksums Done Right)

 Built on campus Centos/Ubuntu mirror
 Automatically slurps checksums from all

releases, patches, and updates
 Currently 4 million files/checksums, 115k

packages (should double soon)
 Client Intended to run on a Dom0 with a

DomU LVM Snapshot
 Uses Official (distro provided) checksums

(for better or worse)

CDR part II

 Will accept connections from on campus
 If you hammer our server too hard we

might ask you to setup MySQL
replications (which we have working) and
hammer your own server

 Is opensource, will share source code
(subversion and trac) to allow other folks
to setup similar systems.

 Will allow replication from other UCs

CDR part III

 No near term plans for Microsoft OS's (is
it even legal?) Willing to help those
interested.

 Clients just stream checksums and
filenames over ssh and get a response:
 Path and checksum are in database and

known good (currently this defaults to silent)
 Path is in database and checksum is bad
 Path and checksum are unknown.

CDR part IV

 Database is 3.5G (likely to at least double
soon).

 Server handles 12,004 requests in 4.5
seconds

 My Ubuntu desktop has around 12k
binaries, libraries, and kernel modules

 Single server should easily handle 5k
daily full system scans.

 Replicated servers should scale to
handles as many clients as needed.

Unintentional benefits

 Change tracking
 Detecting bad disks
 Detecting system admins mistakes
 Detecting Kernel/OS/RAID controller

errors.
 RAID scrubbing.
 Tracking side effects from badly behaved

applications/installers.

CDR downsides

 Not all packages include MD5sums
(should we add them?)

 MD5sum while unintentional collisions are
very rare, intentional collisions have been
documented. 2^128 is smaller than it
used to be.

 OSX and windows still unsupported, the
status of package signatures, and
checksums for binaries is unknown.

Why not MD5?

Why not MD5?

CDR plans

 polish support for Ubuntu/Centos x86-64
and ia32

 Possible server side GUI for managing
reports and differences.

 Currently in subversion and trac
 Requests?

DomU vs Dom0

 Make snapshot:
 lvcreate --size 1G --snapshot --name snap

/dev/virt/dapper
 mount /dev/virt/snap /mnt/snap

 Ask CDR:

Fun with Rootkits

Take home messages

 Automatic known good patterns are much
easier to track than known bad.

 Virtualization allows powerful methods for
monitoring a system, use it before the
attacker gets the high ground (see
subvirt)

 Checksums done right (dom0, snapshots,
and a current database) can be easy,
fast, cheap, and effective. There's
nothing particularly hard about it.

Should you be scared?

Credits

 Thanks to Scott Beardsley for his help
with MySQL, DB Schema, and CDR related
python work.

 Adam Getchell for the reference to an
excellent virtualization paper:
http://www.eecs.umich.edu/virtual/papers/king06.pdf

 Computational Science and Engineering
for the support to work on the
infrastructure needed for doing clusters
right.

 Xen ... material for another talk.

http://www.eecs.umich.edu/virtual/papers/king06.pdf

Discussion

 Source available at
https://svn.cse.ucdavis.edu/trac/cdr/

 Feedback forms
 Slides at http://cse.ucdavis.edu/~bill/virt

Thanks for coming!

Xen and Intrusion Detection &
Recovery with Linux

by Bill Broadley bill@cse.ucdavis.edu

https://svn.cse.ucdavis.edu/trac/cdr/
http://cse.ucdavis.edu/~bill/virt

