A Brief History of UNIX File Systems

Val Henson
IBM, Inc.
vhenson®@us.ibm.com

Summary

Review of UNIX file system concepts

File system formats, 1974-2004

File system comparisons and recommendations

Fun trivia

Questions and answers (corrections ONLY during talk)

VES/vnode architecture

VES: Virtual File System: common object-oriented interface
to fs's

vhode: virtual node: abstract file object, includes vhode ops

All operations to fs's and files done through VFS/vnode in-
terface

S.R. Kleiman, “Vnodes: An Architecture for Multiple File
System Types in Sun UNIX,” Summer USENIX 1986

Some Definitions

superblock: fs summary, pointers to other information
Inode: on-disk structure containing information about a file
indirect block: block containing pointers to other blocks

metadata: everything that is not user data, including directory
entries

Disk characteristics

Track - contiguous region, can be read at maximum speed

Seek time - time to move the head between different tracks

Rotational delay - time for part of track to move under head

Fixed per I/O overhead means bigger I/Os are better

In the beginning: System V FS (S5FS) (c. 1974)

First UNIX file system, referred to as “FS”

Disk layout: superblock, inodes, followed by everything else

512-1024 byte block size, no fragments

Super simple - and super slow! 2-5% of raw disk bandwidth

Berkeley Fast File System (FFS or UFS) (c. 1984)

e Metadata spread throughout the disk in “cylinder groups”

e Block size 4KB minimum, frag size 1KB (to avoid 45%
wasted space)

e Physical disk parameters taken into account
e Much better performance - 14-47% of raw disk bandwidth

e Also 256 byte file names, file locks, symlinks, rename(), and
quotas

Improvements to FFS/UFS

e 1987: Logging

e 1991: Improvements to block allocation and read ahead pol-
icy (Larry McVoy and Steve Kleiman)

e 1999: Soft updates (Kirk McKusick and Greg Ganger)

Log-Structured File System (LFS) (1991)

All on-disk data in the form of sequential log entries

Crash recovery rolls forward from last checkpoint

70% of raw disk write bandwidth, but FFS can do as well

Mendel Rosenblum and John K. Ousterhout, “The Design
and Implementation of a Log-Structured File System,” 13th
ACM SOSP

ext2 and ext3 (1993 - present)

FFS-like, no fragments

ext3 adds journaling, removes need for fsck on crash

Primary attributes are simplicity, performance, and recover-
ability

ext2 often beats all other file systems in performance tests

Write Anywhere File Layout (WAFL) (1994)

Copy-on-write, checksummed, always consistent on-disk for-
mat

Metadata in files

Intent log in NVRAM satisfies NFS sync semantics and per-
formance

Revolutionary and completely underappreciated

Dave Hitz, et al., “File System Design for an NFS File Server
Appliance,” USENIX Winter 1994

10

SGI's XFS (1996)

EFS was FFS with extents - pointers to contiguous lists of
blocks

XFS adds B+ trees to track free space, index directories,
locate file blocks and inodes, also first 64-bit file system in
wide use

Focus on scalability and streaming I/O - 90-95% raw disk
bandwidth

Dynamic inode allocation, logging, volume manager, multi-
threaded read/writes

11

JFS (2000)

e Similar to XFS with fewer B4 trees

e Currently undergoing major hype

12

Veritas File System (VxFS) (c. 1988 - present)

Version 1: Similar to FFS plus logging

Version 5: Similar to XFS/JFS

Main claim to fame: ported to many architectures

Leader in special purpose performance hacks

13

Reiserfs v. 1 - 4 (c. 1998 - present)

e Designed for good small file and large directory performance

e Constantly changing (4 on-disk formats in 6 years)

e A little of everything: logging, B4 trees, COW, tail-packing

e Second only to ext2 in performance, but poorer recovery

e Understood by few, no good papers

14

Zettabyte File System (ZFS) (2004)

First fs to improve on WAFL, available in a future Solaris 10

update

Built-in volume manager, file systems share storage

First 128-bit file system

Self-healing data, dynamic striping, multiple block sizes, un-

limited constant-time r/w snapshots...

15

Solutions to common design problems

e On-disk consistency in face of system crash

e Large contiguous allocations

e Metadata allocation

16

On-disk consistency

e Repair after the fact - fsck (FFS, ext2) item Journal replay
- write log, redo writes

e Soft updates - per-pointer roll forward and back

e Always consistent - copy-on-write

17

LLarge contiguous allocations

e Block clustering

e Extents

e Multiple block sizes

18

Metadata allocation

Fixed number, all together

Fixed number, statically spread throughout the disk

Fixed number, located anywhere

Dynamically allocated, in files

19

File system feature table

FFS | UFS | ext2 | ext3 | VXFS | XF FS | WAFL | reiser4 FS

Dynamic inodes X X X X X X
64/128 bit X X X X
no fsck on boot X X X X X X X X X
logging X X X X X X X X
always consistent X X
checksums X X
fs snapshots X X X X X X
online resize X X X X X X
fast & reliable X

20

Q&A

vhenson@us.ibm.com

21

