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Summary

Review of UNIX file system concepts

File system formats, 1974-2004

File system comparisons and recommendations

Fun trivia

Questions and answers (corrections ONLY during talk)



VES/vnode architecture

VES: Virtual File System: common object-oriented interface
to fs's

vhode: virtual node: abstract file object, includes vhode ops

All operations to fs's and files done through VFS/vnode in-
terface

S.R. Kleiman, “Vnodes: An Architecture for Multiple File
System Types in Sun UNIX,” Summer USENIX 1986



Some Definitions

superblock: fs summary, pointers to other information
Inode: on-disk structure containing information about a file
indirect block: block containing pointers to other blocks

metadata: everything that is not user data, including directory
entries



Disk characteristics

Track - contiguous region, can be read at maximum speed

Seek time - time to move the head between different tracks

Rotational delay - time for part of track to move under head

Fixed per I/O overhead means bigger I/Os are better



In the beginning: System V FS (S5FS) (c. 1974)

First UNIX file system, referred to as “FS”

Disk layout: superblock, inodes, followed by everything else

512-1024 byte block size, no fragments

Super simple - and super slow! 2-5% of raw disk bandwidth



Berkeley Fast File System (FFS or UFS) (c. 1984)

e Metadata spread throughout the disk in “cylinder groups”

e Block size 4KB minimum, frag size 1KB (to avoid 45%
wasted space)

e Physical disk parameters taken into account
e Much better performance - 14-47% of raw disk bandwidth

e Also 256 byte file names, file locks, symlinks, rename(), and
quotas



Improvements to FFS/UFS

e 1987: Logging

e 1991: Improvements to block allocation and read ahead pol-
icy (Larry McVoy and Steve Kleiman)

e 1999: Soft updates (Kirk McKusick and Greg Ganger)



Log-Structured File System (LFS) (1991)

All on-disk data in the form of sequential log entries

Crash recovery rolls forward from last checkpoint

70% of raw disk write bandwidth, but FFS can do as well

Mendel Rosenblum and John K. Ousterhout, “The Design
and Implementation of a Log-Structured File System,” 13th
ACM SOSP



ext2 and ext3 (1993 - present)

FFS-like, no fragments

ext3 adds journaling, removes need for fsck on crash

Primary attributes are simplicity, performance, and recover-
ability

ext2 often beats all other file systems in performance tests



Write Anywhere File Layout (WAFL) (1994)

Copy-on-write, checksummed, always consistent on-disk for-
mat

Metadata in files

Intent log in NVRAM satisfies NFS sync semantics and per-
formance

Revolutionary and completely underappreciated

Dave Hitz, et al., “File System Design for an NFS File Server
Appliance,” USENIX Winter 1994
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SGI's XFS (1996)

EFS was FFS with extents - pointers to contiguous lists of
blocks

XFS adds B+ trees to track free space, index directories,
locate file blocks and inodes, also first 64-bit file system in
wide use

Focus on scalability and streaming I/O - 90-95% raw disk
bandwidth

Dynamic inode allocation, logging, volume manager, multi-
threaded read/writes
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JFS (2000)

e Similar to XFS with fewer B4 trees

e Currently undergoing major hype
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Veritas File System (VxFS) (c. 1988 - present)

Version 1: Similar to FFS plus logging

Version 5: Similar to XFS/JFS

Main claim to fame: ported to many architectures

Leader in special purpose performance hacks
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Reiserfs v. 1 - 4 (c. 1998 - present)

e Designed for good small file and large directory performance

e Constantly changing (4 on-disk formats in 6 years)

e A little of everything: logging, B4 trees, COW, tail-packing

e Second only to ext2 in performance, but poorer recovery

e Understood by few, no good papers
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Zettabyte File System (ZFS) (2004)

First fs to improve on WAFL, available in a future Solaris 10

update

Built-in volume manager, file systems share storage

First 128-bit file system

Self-healing data, dynamic striping, multiple block sizes, un-

limited constant-time r/w snapshots...
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Solutions to common design problems

e On-disk consistency in face of system crash

e Large contiguous allocations

e Metadata allocation
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On-disk consistency

e Repair after the fact - fsck (FFS, ext2) item Journal replay
- write log, redo writes

e Soft updates - per-pointer roll forward and back

e Always consistent - copy-on-write
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LLarge contiguous allocations

e Block clustering

e Extents

e Multiple block sizes
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Metadata allocation

Fixed number, all together

Fixed number, statically spread throughout the disk

Fixed number, located anywhere

Dynamically allocated, in files
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File system feature table

FFS | UFS | ext2 | ext3 | VXFS | XF FS | WAFL | reiser4 FS

Dynamic inodes X X X X X X
64/128 bit X X X X
no fsck on boot X X X X X X X X X
logging X X X X X X X X
always consistent X X
checksums X X
fs snapshots X X X X X X
online resize X X X X X X
fast & reliable X
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Q&A

vhenson@us.ibm.com
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