
Web Application Hacking
How to Make and Break Security on the Web

By Wesley Aptekar-Cassels



SQL Injection - Example

SELECT * FROM `users` WHERE name = 'NAME' AND password = 'PASSWORD';

The user inputs both NAME and PASSWORD 
directly into the SQL statement.

SELECT * FROM `users` WHERE name = 'NAME' AND password = '' OR 'x'='x';



SQL Injection - Protection

mysqli_real_escape_string()

echo mysql_real_escape_string("' OR 'x'='x");

\' OR \'x\'=\'x

Appends backslashes before unsafe characters.

Escape everything that might ever touch a SQL statement.



Broken Authentication & Session Management 

● Passwords
○ Hashed and salted
○ HTTPS

● Session IDs
○ Don’t use URL rewriting
○ Set reasonable session timeouts
○ Invalidate session after logout
○ HTTPS



Cross Site Scripting (XSS) - Example

Input: 
<script>alert('HACKED');</script>

Output:



Cross Site Scripting - Protection

htmlentities()

echo htmlentities("<script>alert('HACKED')</script>");

&lt;script&gt;alert('HACKED')&lt;/script&gt;



Insecure Direct Object References - Example

GET http://example.com/delete_post.php?id=5

Delete link is only shown on users own posts, but 
works for any post. (More often used when 
talking about accessing data, but applies to 
functions as well)



Insecure Direct Object References - Protection

if (user_has_permission($user)) {

do_action()

} else {

echo 'GTFO';

}

It’s that simple.



Security Misconfiguration

● Out of date software
● Unnecessary ports/services/features
● Default passwords
● Error handling displayed to user in 

production
● Extra security settings
● And more...



Sensitive Data Exposure 

● Sensitive data in plaintext
● Data transmitted in plaintext
● Old cryptography used (md5, etc.)
● Private key management
● And more...



Missing Function Level Access Control

Same as Insecure Direct Object References, 
but refers more to functions and user actions.



Cross Site Request Forgery - Example

<img src='http://example.com/new_post.php?text=HACKED'></img>

Browser sends GET request, and gets invalid data back (HTML).
This can trick any user into sending a request to any page. (Javascript required 
for post requests on the same domain).

The important bit is that www.evilsite.com can send a request to www.example.
com, and the user that sees it will have the privilages they do on www.example.
com.

Can also be done on same domain as the request is being sent to.



CSRF - Protection

Add a CSRF token.  Random string that is 
generated by the server and MUST be sent by 
the browser for the request to go through.

Origin header is not a solution, as it is broken 
in firefox. (Bug ID 446344)

https://bugzilla.mozilla.org/show_bug.cgi?id=446344


Using Components with Known Vulnerabilities 

● Try to use components that you write
● Monitor CVE, NVD, mailing lists, etc.
● Use up to date software
● chroot and use users with few privileges
● Remember that all software is or will be 

broken



Unvalidated Redirects and Forwards - Example

http://example.com/redirect.php?http://location=evilsite.com

Not very dangerous, but evilsite can be phishing, malware, etc.

Can be a security feature if it prompts to leave the site (“You are leaving 
example.com!  Continue? Y/N”)



Unvalidated Redirects and Forwards - Protection

if ($_SERVER['HTTP_HOST'] == parse_url($_GET['url'])) {

// Go ahead!

} else {

// NOPE!

}



And much more… 

● Directory traversal
● Poison null byte
● Buffer Overflow (yes, even in webapps)
● etc.



Thank you!
Any questions?


