

Xen and Intrusion Detection &
Recovery with Linux

Bill Broadley
<bill@cse.ucdavis.edu>
Computational Science

and Engineering
UC Davis

Aug 20th, 2007
LUGOD

6:30-9:00pm

Threats

 Users
 Programmers
 Vendors
 Poor programming languages
 Applications
 Operating systems.

Who can you trust?

 If you don't have physical security?
 If you do have physical security?
 Logs? Auditing?
 Users?
 OS binaries? Application binaries?
 The file system?
 The network? Kernel?

Privilege Escalation

 What boundaries can not be broken?
 Non-user -> user?
 user -> root?
 Application -> root?
 root -> kernel?
 DomU -> Dom0 (para)?
 DomU -> Dom0 (HVM)?

Ideal world?

 Perfect physical security
 No network
 No users
 No untrusted binaries
 Trusted kernel
 Logs and auditing you can trust.

Realistic world

 Simple environment (kernel+sshd)
 Private network
 Maintain the high ground.
 Trustworthy binaries
 Trustworthy kernel
 No 3rd party applications
 All users, applications, and untrustworthy

kernels on a virtual machine

Attack model

 Any open port (buffer overflows)
 Any user account (web or shell)
 Escalate any privileges
 Hide tracks (including tripwire)
 Install back doors
 Collect any valuable info (identity, CC,...)
 Collect recon for additional attacks

Old school obvious signs of
compromise

 Unusually full disks and/or busy networks.
 Complaints from other networks you are

attacking/scanning
 Complaints from other networks that you

are spamming
 Defaced web pages

Often ego motivated.
Getting much less common

New signs of compromise
 Ever more invasive hackers make a mistake

and break something

 Audit, maintenance, or upgrades uncover
compromise, often months after the
compromise

 Giant list of user/pass, ss numbers, or credit
card numbers appear.

 Embarrassing press releases

 The scariest of all..... nothing.

Attackers are more organized, more
professional, and are often profit instead of ego
motivated.

Old school intrusion detection

 ps, lsof, /proc
 local syslog
 tripwire – (usually local/insecure), hacker

scripts go over updating tripwire
databases and/or crafting replacements
that give the all clear

 The truly paranoid do tripwire “right”
which requires downtime and is labor
intensive. Rare.

Old school counter ID

rootkits (hack ps, lsof, ls, du, etc.)
strange filenames
obscure directories
zero wtmp/utmp/syslog
bastion hosts
known bad checksums (NEVER current)
chkrootkit, rkhunter
Anti-ID forensics to discover how to update
database.

Current anti-ID

 Encryption (no more sniffing hackers)
 Anonymous networks (tor)
 P2P bot nets for DoS, Phishing, and

spamming.
 Kernel rootkits (solaris, linux, *bsd, and

windows) with or without kernel modules.
 Application rootkits (attacked in memory)
 Port knocker based backdoors.

Kernel rootkits
 Hard to detect from inside. Removes common

methods of discovery like using trusted bins.

 Does NOT require modules to be enabled.

 OS bootstrap process is very complex, any
binary, module, or script can compromise
kernel.

 /sbin/init often attacked, post boot checksums
will reflect the original checksum

 Very effective at covering back doors, sniffers,
promiscuous mode, trojans, and port knockers.

 Can even hide parts of files.

 Often readdir (get next file) will not work, but
open and exec work with exact name

Kernel rootkits part II

 Will happily lie to ps, du, top, lsof, and tripwire

 Open or stat will return uncompromised version

 Exec will result in compromised version being
run

 Extremely common, current traditional rootkits
are becoming hard to find.

 Watching the low hanging fruit (ps, du, ls,
nmap, lsof and friends) no longer effective. Can
be triggered from 1000's of files.

Rootkits Part III

 First gen used kernel module and insmod,
played with the syscall table.

 2nd gen access /dev/kmem, doesn't
require modules, visible to /proc

 3rd gen tweaks lower level kernel
structures like the VFS layer, harder to
detect, installs via /dev/mem

 4th generation virtualizes the kernel, very
hard to detect and survives “reboots and
reinstalls”

Current ID

 Dom0 monitoring DomU
 Logical volumes (snapshots)
 Off host logging
 Maintaining the high ground (private

networks, dom0, secure simple hosts, and
a trusted boot sequence)

 Known good checksums (dramatically
better than known bad.)

 Vendor supplied checksums/signatures.

Next gen anti-ID

 Get ring 0, take the high ground,
virtualize the system

 Nasty tricks:
 Pretend to turn off, but instead sleep
 maintain backdoor system even on a power

cycle with full reinstall from trusted media
 Fake BIOS and POST
 Mostly undetectable from the domU (tricky

timing might help in some cases).

Next gen ID

 Trusted boot sequence (BIOS -> boot
loadloader -> kernel -> modules)

 Hardware support (IBM's TPM chip)
 Vendor signed binaries and modules
 Improvement in practices like actually

pulling the plug before installs.
 Virtualize first.
 Careful LED watching (sleep vs suspend)
 Xebek – Honeypot tool

Xebek

 Whitehat rootkit for Xen.
 Designed for high interaction honeypots
 Excellent at crossing the semantic gap
 Intercepts system calls and keystrokes
 Does not use network stack for logging
 Dom0 does not have to be network visible
 Requires kernel source patch (whitehat)

End of overview

 Discussion?
 Everyone understand?

Details, tools, and examples

 Step by step analysis of compromised
system

 Example tools
 Example backdoors
 Example trojans
 CDR – Checksums Done Right
 Dom0 vs DomU

The basics: nmap

Note the explicit list of ports, 4
services running (great)

The basics: lsof

Looks sane, network connections look
reasonable, can we trust the COMMAND? Lets
check to see if we should trust PID 3532.

The basics: /proc

Exe points where expected (and can even recover
deleted binaries) FD = file handles, no open files to
strange places like /var/tmp/.foo/sniffer
envirion and cwd look reasonable. Is /usr/sbin/sshd valid?

Binary verification (old way)

5

redhat binary verify

Who are we trusting?

Binary verification part II

 Binary does not verify
 Extremely suspicious
 Painful to verify (someone should

automate this)
 Who are we trusting here?
 Looks like a functional trojan
 What evil could it do?
 How would we find out?

lsof part II

lsof part III

 No strange libraries
 No strange sockets
 No hint of anything strange

Basics: strace

Looks good.... mostly.

Logs

Not a good sign.

Logs part II
Sometimes you get lucky:

I wonder if that works here:

Hrm, what would the echo | nc commands be for?

ssh part II
Lets try that exactly:

Bad...

Port knocking

 Can't be detected by lsof

 Ignores host firewalls (why do we have host
firewalls again?)

 Breaks the mapping between ports and
processes (making finding the culprit much
harder).

 Can be used to start, stop, or trigger any
sequence of packets (UDP or TCP), hitting a
sequence of ports, optionally included or
excluded with fin, syn, rst, psh, ack or urg flags.

Dom0 ID Advantages

 Relatively straight forward to secure (no
applications, users, or external network)

 Very hard to escape from a
paravirtualized domU

 Even harder to escape from a hardware
virtualized domU

 Can transparently snapshot domU
storage and can't be lied to about the FS.

Dom0 ID Disadvantages

 Semantic GAP is substantial

 DomU sees TCP connections, files, sessions,
processes.

 Dom0 sees packets, blocks, and raw memory.
 Tools are starting to bridge the gap

 New Xen-3.1 API
 subvirt (google for king06-1.pdf)
 Xebek (xen aware sebek descendant)

 Can't easily view DomU kernel structures,
processes, data structures, or kernel memory.

Checksum pitfalls

 Need to trust kernel, libraries, and binaries.

 Patching is arduous (auditing changes)

 Need to trust (often local) database

 Database is hard to securely update (is it read
only or not?)

 System needs to be secure in the first place.
scans can compromise unboxed machines
before the first patch finishes.

 Checksums are a moving target

Checksums Done Right
 Known good database (not based on machines

preexisting state)

 Run with a trustworthy kernel, libraries,
binaries, and database

 With virtualization and snapshots, checksums
can be done with zero downtime

 Checksum process invisible to users and
attackers.

 LVM snapshots are the low hanging fruit for
crossing the semantic gap.

 Patching is easy, less effort helps insure things
are done securely.

CDR (Checksums Done Right)

 Built on campus Centos/Ubuntu mirror
 Automatically slurps checksums from all

releases, patches, and updates
 Currently 4 million files/checksums, 115k

packages (should double soon)
 Client Intended to run on a Dom0 with a

DomU LVM Snapshot
 Uses Official (distro provided) checksums

(for better or worse)

CDR part II

 Will accept connections from on campus
 If you hammer our server too hard we

might ask you to setup MySQL
replications (which we have working) and
hammer your own server

 Is opensource, will share source code
(subversion and trac) to allow other folks
to setup similar systems.

 Will allow replication from other UCs

CDR part III

 No near term plans for Microsoft OS's (is
it even legal?) Willing to help those
interested.

 Clients just stream checksums and
filenames over ssh and get a response:
 Path and checksum are in database and

known good (currently this defaults to silent)
 Path is in database and checksum is bad
 Path and checksum are unknown.

CDR part IV

 Database is 3.5G (likely to at least double
soon).

 Server handles 12,004 requests in 4.5
seconds

 My Ubuntu desktop has around 12k
binaries, libraries, and kernel modules

 Single server should easily handle 5k
daily full system scans.

 Replicated servers should scale to
handles as many clients as needed.

Unintentional benefits

 Change tracking
 Detecting bad disks
 Detecting system admins mistakes
 Detecting Kernel/OS/RAID controller

errors.
 RAID scrubbing.
 Tracking side effects from badly behaved

applications/installers.

CDR downsides

 Not all packages include MD5sums
(should we add them?)

 MD5sum while unintentional collisions are
very rare, intentional collisions have been
documented. 2^128 is smaller than it
used to be.

 OSX and windows still unsupported, the
status of package signatures, and
checksums for binaries is unknown.

Why not MD5?

Why not MD5?

CDR plans

 polish support for Ubuntu/Centos x86-64
and ia32

 Possible server side GUI for managing
reports and differences.

 Currently in subversion and trac
 Requests?

DomU vs Dom0

 Make snapshot:
 lvcreate --size 1G --snapshot --name snap

/dev/virt/dapper
 mount /dev/virt/snap /mnt/snap

 Ask CDR:

Fun with Rootkits

Take home messages

 Automatic known good patterns are much
easier to track than known bad.

 Virtualization allows powerful methods for
monitoring a system, use it before the
attacker gets the high ground (see
subvirt)

 Checksums done right (dom0, snapshots,
and a current database) can be easy,
fast, cheap, and effective. There's
nothing particularly hard about it.

Should you be scared?

Credits

 Thanks to Scott Beardsley for his help
with MySQL, DB Schema, and CDR related
python work.

 Adam Getchell for the reference to an
excellent virtualization paper:
http://www.eecs.umich.edu/virtual/papers/king06.pdf

 Computational Science and Engineering
for the support to work on the
infrastructure needed for doing clusters
right.

 Xen ... material for another talk.

http://www.eecs.umich.edu/virtual/papers/king06.pdf

Discussion

 Source available at
https://svn.cse.ucdavis.edu/trac/cdr/

 Feedback forms
 Slides at http://cse.ucdavis.edu/~bill/virt

Thanks for coming!

Xen and Intrusion Detection &
Recovery with Linux

by Bill Broadley bill@cse.ucdavis.edu

https://svn.cse.ucdavis.edu/trac/cdr/
http://cse.ucdavis.edu/~bill/virt

