
Intro to Rust

Learning to Write Safe Programs with 
Less Code



First: do we need another language?

● Language evolution is important
● New ideas can improve old languages (python, java, php)
● New communities can be built from the ground up



~70% of security bugs are from memory safety [1]

from https://xkcd.com/1700/

https://xkcd.com/1700/


Challenges for system languages

How can we:

● Describe low level programs with high level abstractions
● Avoid a costly runtime (no garbage collection)
● Make safe memory guarantees at compile time



The answer: a better compiler

The rust compiler knows a lot about your program:

● Whenever values are assigned to variables
● Which code accesses and/or attempts to change values
● When values go out of scope 



Introducing rust’s ownership model

● Every value has an owner (in foo = 5, foo is the owner)
● There can only be one
● The value can be moved to a new owner (let x = 5; let y = x;)
● Values are dropped when the owner goes out of scope



What happens next?

from https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html


s1 is no longer the owner

from https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html


Borrowing

● You can have as many immutable (read-only) references as you want
● Or you can have one mutable (read/write) reference



What happens next?

from https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html

https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html


Goodbye to null

● An option type is an enum that can have Some(<value>) or None
● Any code that uses it needs to handle both possible cases
● No null references or missing code paths

“I call it my billion-dollar mistake.”

-Tony Hoare, inventor of the null reference



The Option type defined

The type variable T can be substituted with any type to make a new type.

e.g. Option<String>



Pattern matching

from https://doc.rust-lang.org/book/ch06-02-match.html

https://doc.rust-lang.org/book/ch06-02-match.html


Error propagation with ?

from https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html

https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html


Zero cost abstractions

The compiler removes any overhead or unnecessary runtime lookups for 
features like:

● Pattern matching
● Generics
● Traits
● Iterators



Fearless concurrency in rust

● Uses channels to communicate
● Threads are OS-level threads (not green threads)
● Ownership/borrowing prevents data races and common bugs
● There’s nothing* special!

* aside from the sync/send traits and threading



API docs

● Building docs compiles your code
● API docs can’t get out of date
● Types are linked to their definitions and sources
● Provides links to dependency’s documentation 
● You can even use compiler-checked doc tests!



API docs: example

How would you work with the `Path` library?

from https://doc.rust-lang.org/std/path/struct.Path.html

https://doc.rust-lang.org/std/path/struct.Path.html


WebAssembly (WASM)

● No garbage collection makes it easy to compile to new targets
● Rust .wasm files are small (no runtime)
● Supported by firefox, chrome, IE, safari
● Deploy your apps straight to the web
● It’s not JavaScript



When to use rust

● Greenfield projects
● Anywhere you’d use a low level language
● Compiled extensions for python
● WASM



When not to use rust

● Great abstractions! ...still not suited to scripting
● Not the most common skillset
● Doesn’t have the libraries of java and python



How do I learn more?

● https://doc.rust-lang.org/stable/book/
● https://github.com/ericrasmussen/rust-exercises/

https://doc.rust-lang.org/stable/book/
https://github.com/ericrasmussen/rust-exercises/


Links

[1] https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/


