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What is OCFS?
● GPL'd Extent Based Cluster File System

● Is a shared disk clustered file system

● Allows two or more nodes to access the same file system

● File system is mounted natively on all nodes

● Supports a maximum of 32 nodes

Shared SCSI, Fiber 
Channel, etc.



Is it like NFS?

● No.

● In NFS, the file system is hosted by one node

● Rest of the nodes access the file system via the 
network

● Single point of failure

● No node recovery

● Slow data throughput

Ethernet



Why does Oracle need it?

● Oracle's Real Application Cluster (RAC) database, uses 
a shared disk

● As most OSes do not provide a shared disk cluster file 
system, RAC data files, control files, etc. need to exist 
on a raw partition

● Raw is hard to manage

● Moreover, Linux 2.4 allows a max of 255 raw partitions

● No auto-extending of partitions



Why does Oracle need it?

● OCFS allows for easier management as it looks and 
feels just like a regular file system

● No limit on number of files

● Allows for very large files (max 2TB)

● Max volume size 32G (4K block) to 8T (1M block)

● Oracle DB performance is comparable to raw



What does the database provide?

● Multi-node data caching

● Multi-node data locking

● Journals it's own operations (DB logfiles)



What's new in OCFS2?

● Support shared ORACLE_HOME
● Improved meta data caching
● Improved meta data journalling
● Improved node recovery
● Faster data allocation
● Context Dependant Symbolic Links (CDSL)
● Cleaner code



How do I use it?

● Hardware Setup
● 2+ node setup with some sort of shared disk
● Shared disk could be Shared SCSI, Fiber Channel, 

etc.
● For testing purposes, recommend using FireWire 

(very cheap)
● http://oss.oracle.com/projects/firewire
● OSS site has information and kernels with 

FireWire fixes



Process Architecture

● OCFS is a kernel module

● On the first mount creates 3 kernel threads
● [ocfs2nm-N] => one for each mounted volume. Thread runs 

in a loop reading the volume for any lock requests from 
other nodes.

● [ocfs2cmt-N] => journal checkpointing thread. Commits 
pending transactions and releases related locks.

● [ocfs2lsnr] => one on a node. Is a listener for the network 
dlm.



● The third important pid is that of the user-space process 
which is accessing the fs. e.g., cp, mv, dbwr, etc.

● All lock requests on a node are triggered by the user-
space process.

● All lock requests by other nodes are serviced by the 
ocfs2nm-N thread, using kernel worker threads.

● Recovery threads come and go as nodes die.

Process Architecture



Volume Layout

Volume Header (8 sectors)

Node configs (38 sectors)

Publish area (32 sectors)
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Free area

Data blocks
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Note: Not drawn to scale



Node Configuration

● Node name, ip address, ip port and guid is stored in this 
area

● Slots 0 to 31 represent node numbers 0 - 31

● Node number is auto-allocated the first time a node 
mounts a volume

● A node could have different node numbers across 
multiple ocfs volumes

● /proc/ocfs2/<volume_num>/nodenum

● OCFS identifies a node by its guid



Publish Area

● Every node owns one sector for writing, aka, its publish 
sector

● In it, the nodes write the timestamp at regular intervals 
to indicate to the other nodes that they are alive

● Nodes also use their publish sector to request locks on 
a resource

● Resources are structures on disk and its number is its 
byte offset



Vote Area

● Every node owns one sector for writing, aka, its vote 
sector

● In it, nodes vote for the resource lock asked to by 
another node

● Requesting node collects the votes from all the nodes 
and takes the lock if all vote OK

● The lock state is written on the disk (for files in the file 
entry, for bitmap in the bitmap lock sector)



Distributed Lock Manager

● Network DLM is strongly preferred method

● OCFS requires locks only for the file system meta-data 
changes

● Does not protect file data changes

● Expects the application to be cluster-aware

● Oracle RAC is cluster-aware and it performs its own 
intelligent caching and locking of file data



Distributed Lock Manager

● Network-based dlm functions similarly.

● In it, the node requesting a vote just sends a vote-
request packet to all interested nodes

● The nodes inturn reply using the vote-reply packet

● When activated, the publish sector is only used to 
identify alive nodes (heartbeat) whereas the vote sector 
is unused

● The disk-based dlm gets automatically activated 
whenever one or more “alive” nodes is not heard of on 
the network



Space Management - Bitmap

● Each bit in the space bitmap indicates free/alloc state of 
a data block

● Bitmap size is fixed to 1M

● Size of block size determines max size of volume 

max_vol_size = block_size * 1M * 8

● Block sizes can be 4K, 8K, 32K, 64K, 128K, 256K, 
512K or 1M



Space Management

● File data is allocated space from the same bitmap

● Each meta-data on disk has a lock structure which 
holds the lock state

● System files allocated using the same scheme

● System files are used to allocate metadata, store the 
journal, etc.

● Are hidden for regular file system calls



Space Management – File

● Uses extent based space allocation for files rather than 
the block based (ext2)

● Requires less accounting for very large files

● File entry initially has 3 direct extent pointers

● When file has >3 extents, the extent pointers become 
indirects

● When file has >54 extents, the extent pointers become 
double indirects



F.E.

Local Extents

Data Data Data

F.E.

Data Data DataData

F.E.

Data Data...

Non-local Extents

● Green squares are indirect blocks which hold 18 extent 
pointers each.

● Can have up to three levels of indirect pointers before 
you've run out of theoretical space.

Space Management – File



Space Management – Local Alloc

● One “window” per node, only use local alloc on smaller space 
allocations. Reduces lock contention on main bitmap.

● All bits in window are set on main bitmap, local alloc starts clean.

● As space is used, local alloc bits are set.

● Unused bits are returned to bitmap on shutdown, recovery, or on 
a window move.

Main Bitmap}
} Local Alloc Window



Space Management – Directory

● Directory is a 128K block

● It includes 254 (512 byte) file entries

● Each file entry represents a file, sub-dir or link

● File entry houses the name of the file/sub-dir/link, 
attributes, locking info

● When the number of file in a dir > 254, another 128K 
block is linked



Space Management – Directory

Volume layoutData start offset

V N P V B Data blocks128K

dir node

Index for files in 
dir node

254 file entries (1 sector each)

File entry includes name + attribs + lock 
info



Journalling

● One 8 MB journal file per node

● Block based journalling using the same JBD subsystem 
as Ext3

● JBD keeps track of changed blocks and writes them to 
the journal before flushing them out to disk

● OCFS2 retains locks on journalled objects until they are 
flushed by ocfs2-cmt thread (on demand or on timeout)



Recovery

● NM thread detects node death, launches recovery 
thread

● Locks owned by dead node cannot be retaken until it 
has been recovered.

● Recovery Steps:

● Lock journal file

● If node needs recovery, replay journal and recover local 
alloc.

● Mark node clean

● Unlock journal file



Caching

● Cache Meta Data using “Sequence Numbers”

● In buffer_head private bits

● In inode private data

● Global sequence number

● On block reads, BH sequence # is compared with inode.

● Increment the inode sequence # when another node 
locks it.

● Global incremented with each inode and new sequence 
#'s are set from it.



CDSL – “Context Dependant Symbolic Links”

● Allows node specific files on OCFS2

● Use symlink mechanism to indicate a CDSL file

● Link is followed to a CDSL directory using substitution 
of hostname

● All tools for creating/modifying CDSL are entirely within 
userspace and require no kernel hooks

● Very beta feature at the moment



Improvements in Linux

● Make VFS cluster-aware

● Extend locks in VFS to cluster-wide locks

● Generic DLM services

● Cluster Manager

● IO Fencing

● JBD Improvements
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http://oss.oracle.com/projects/ocfs2/




