
Oracle Cluster File 
System on Linux

Version 2

Kurt Hackel
Señor Software Developer

Oracle Corporation



What is OCFS?
● GPL'd Extent Based Cluster File System

● Is a shared disk clustered file system

● Allows two or more nodes to access the same file system

● File system is mounted natively on all nodes

● Supports a maximum of 32 nodes

Shared SCSI, Fiber 
Channel, etc.



Is it like NFS?

● No.

● In NFS, the file system is hosted by one node

● Rest of the nodes access the file system via the 
network

● Single point of failure

● No node recovery

● Slow data throughput

Ethernet



Why does Oracle need it?

● Oracle's Real Application Cluster (RAC) database, uses 
a shared disk

● As most OSes do not provide a shared disk cluster file 
system, RAC data files, control files, etc. need to exist 
on a raw partition

● Raw is hard to manage

● Moreover, Linux 2.4 allows a max of 255 raw partitions

● No auto-extending of partitions



Why does Oracle need it?

● OCFS allows for easier management as it looks and 
feels just like a regular file system

● No limit on number of files

● Allows for very large files (max 2TB)

● Max volume size 32G (4K block) to 8T (1M block)

● Oracle DB performance is comparable to raw



What does the database provide?

● Multi-node data caching

● Multi-node data locking

● Journals it's own operations (DB logfiles)



What's new in OCFS2?

● Support shared ORACLE_HOME
● Improved meta data caching
● Improved meta data journalling
● Improved node recovery
● Faster data allocation
● Context Dependant Symbolic Links (CDSL)
● Cleaner code



How do I use it?

● Hardware Setup
● 2+ node setup with some sort of shared disk
● Shared disk could be Shared SCSI, Fiber Channel, 

etc.
● For testing purposes, recommend using FireWire 

(very cheap)
● http://oss.oracle.com/projects/firewire
● OSS site has information and kernels with 

FireWire fixes



Process Architecture

● OCFS is a kernel module

● On the first mount creates 3 kernel threads
● [ocfs2nm-N] => one for each mounted volume. Thread runs 

in a loop reading the volume for any lock requests from 
other nodes.

● [ocfs2cmt-N] => journal checkpointing thread. Commits 
pending transactions and releases related locks.

● [ocfs2lsnr] => one on a node. Is a listener for the network 
dlm.



● The third important pid is that of the user-space process 
which is accessing the fs. e.g., cp, mv, dbwr, etc.

● All lock requests on a node are triggered by the user-
space process.

● All lock requests by other nodes are serviced by the 
ocfs2nm-N thread, using kernel worker threads.

● Recovery threads come and go as nodes die.

Process Architecture



Volume Layout

Volume Header (8 sectors)

Node configs (38 sectors)

Publish area (32 sectors)

Vote area (32 sectors)

Space bitmap (1M)

Free area

Data blocks

Free area

Note: Not drawn to scale



Node Configuration

● Node name, ip address, ip port and guid is stored in this 
area

● Slots 0 to 31 represent node numbers 0 - 31

● Node number is auto-allocated the first time a node 
mounts a volume

● A node could have different node numbers across 
multiple ocfs volumes

● /proc/ocfs2/<volume_num>/nodenum

● OCFS identifies a node by its guid



Publish Area

● Every node owns one sector for writing, aka, its publish 
sector

● In it, the nodes write the timestamp at regular intervals 
to indicate to the other nodes that they are alive

● Nodes also use their publish sector to request locks on 
a resource

● Resources are structures on disk and its number is its 
byte offset



Vote Area

● Every node owns one sector for writing, aka, its vote 
sector

● In it, nodes vote for the resource lock asked to by 
another node

● Requesting node collects the votes from all the nodes 
and takes the lock if all vote OK

● The lock state is written on the disk (for files in the file 
entry, for bitmap in the bitmap lock sector)



Distributed Lock Manager

● Network DLM is strongly preferred method

● OCFS requires locks only for the file system meta-data 
changes

● Does not protect file data changes

● Expects the application to be cluster-aware

● Oracle RAC is cluster-aware and it performs its own 
intelligent caching and locking of file data



Distributed Lock Manager

● Network-based dlm functions similarly.

● In it, the node requesting a vote just sends a vote-
request packet to all interested nodes

● The nodes inturn reply using the vote-reply packet

● When activated, the publish sector is only used to 
identify alive nodes (heartbeat) whereas the vote sector 
is unused

● The disk-based dlm gets automatically activated 
whenever one or more “alive” nodes is not heard of on 
the network



Space Management - Bitmap

● Each bit in the space bitmap indicates free/alloc state of 
a data block

● Bitmap size is fixed to 1M

● Size of block size determines max size of volume 

max_vol_size = block_size * 1M * 8

● Block sizes can be 4K, 8K, 32K, 64K, 128K, 256K, 
512K or 1M



Space Management

● File data is allocated space from the same bitmap

● Each meta-data on disk has a lock structure which 
holds the lock state

● System files allocated using the same scheme

● System files are used to allocate metadata, store the 
journal, etc.

● Are hidden for regular file system calls



Space Management – File

● Uses extent based space allocation for files rather than 
the block based (ext2)

● Requires less accounting for very large files

● File entry initially has 3 direct extent pointers

● When file has >3 extents, the extent pointers become 
indirects

● When file has >54 extents, the extent pointers become 
double indirects



F.E.

Local Extents

Data Data Data

F.E.

Data Data DataData

F.E.

Data Data...

Non-local Extents

● Green squares are indirect blocks which hold 18 extent 
pointers each.

● Can have up to three levels of indirect pointers before 
you've run out of theoretical space.

Space Management – File



Space Management – Local Alloc

● One “window” per node, only use local alloc on smaller space 
allocations. Reduces lock contention on main bitmap.

● All bits in window are set on main bitmap, local alloc starts clean.

● As space is used, local alloc bits are set.

● Unused bits are returned to bitmap on shutdown, recovery, or on 
a window move.

Main Bitmap}
} Local Alloc Window



Space Management – Directory

● Directory is a 128K block

● It includes 254 (512 byte) file entries

● Each file entry represents a file, sub-dir or link

● File entry houses the name of the file/sub-dir/link, 
attributes, locking info

● When the number of file in a dir > 254, another 128K 
block is linked



Space Management – Directory

Volume layoutData start offset

V N P V B Data blocks128K

dir node

Index for files in 
dir node

254 file entries (1 sector each)

File entry includes name + attribs + lock 
info



Journalling

● One 8 MB journal file per node

● Block based journalling using the same JBD subsystem 
as Ext3

● JBD keeps track of changed blocks and writes them to 
the journal before flushing them out to disk

● OCFS2 retains locks on journalled objects until they are 
flushed by ocfs2-cmt thread (on demand or on timeout)



Recovery

● NM thread detects node death, launches recovery 
thread

● Locks owned by dead node cannot be retaken until it 
has been recovered.

● Recovery Steps:

● Lock journal file

● If node needs recovery, replay journal and recover local 
alloc.

● Mark node clean

● Unlock journal file



Caching

● Cache Meta Data using “Sequence Numbers”

● In buffer_head private bits

● In inode private data

● Global sequence number

● On block reads, BH sequence # is compared with inode.

● Increment the inode sequence # when another node 
locks it.

● Global incremented with each inode and new sequence 
#'s are set from it.



CDSL – “Context Dependant Symbolic Links”

● Allows node specific files on OCFS2

● Use symlink mechanism to indicate a CDSL file

● Link is followed to a CDSL directory using substitution 
of hostname

● All tools for creating/modifying CDSL are entirely within 
userspace and require no kernel hooks

● Very beta feature at the moment



Improvements in Linux

● Make VFS cluster-aware

● Extend locks in VFS to cluster-wide locks

● Generic DLM services

● Cluster Manager

● IO Fencing

● JBD Improvements



A
Q&Q U E S T I O N SQ U E S T I O N S

A N S W E R SA N S W E R S



http://oss.oracle.com/projects/ocfs2/




