IP Video

Multicast Networks Open Source Software IP Set Top Boxes

> By Ted Deppner April 5, 2005

! Multicast

- Unicast
 - Traditional IP communications. Always point-to-point
- Broadcast
 - Destination of all ones, ie 192.168.0.255
 - Works in small "single switch" environments
 - Can do one-to-many, but floods all ports

Multicast Specifics

- Special
 - IP address, aka "group"
 - 224.0.0.0 through 239.255.255.255
 - MAC address
 - 01:00:5E:xx:xx:xx
 - NOTE: 1:32 mapping of IP to MAC
 - IGMP (Internet Group Management Protocol)
 - Allows routers and switches to be smart.
 - Snooping

Multicast Specifics

- Must use a protocol to pass through a router.
 - DVMRP (Distance Vector Multicast Routing Protocol)
 - Dense mode only, campus applications, high bandwidth, high interconnectivity
 - PIM (Protocol Independent Multicast)
 - Sparse or Dense mode
 - Sparse allows for WAN type applications where many want data from a few

Multicast Networks

- Many-to-Many or One-to-Many
 - Mbone
 - Symantec Ghost
- Allows one source (eg video server) to send to N clients with no more bandwidth used than to serve one client
- Contrast with Unicast (traditional TCP/IP communication, for instance); which is always one-to-one

Switch builds a forwarding table per group per port based on IGMP Join/Leave messages.

Many to many. It's entirely possible to have a "farm" of systems listening and talking on the same multicast group.

Uses: autoconfiguration of clients... you don't care which client is which, just that a client is online and therefore usable for a purpose. The server "autodetects" new clients and can act accordingly.

Be the packet

- Client sends an IGMP Join for 225.1.1.1
- Switch receives Join, adds that port to its forwarding table for 225.1.1.1
- Client sends a packet, UDP port 1111
 - IP address will source from the client's outbound interface
 - Destination IP address will be 225.1.1.1
 - Destination MAC address will be 01:00:5E:xx:xx:xx

Be the packet

- The switch gets to forward based on its MAC forwarding table, receiving a packet destined for 01:00:5E:xx:xx:
- Any UDP port may be used. Clients must listen on both the correct IP and the correct port (as it is with unicast).

Popular Multicast Modes

- PIM (Protocol Independent Multicast)
 - Dense Mode
 - Everyone talks to everyone
 - Every router carries every group
 - Sparse Mode
 - One source talks to everyone else.
 - Eg, video source sends to 5,000 IP set tops.
 - Best for wide-scale data streaming, ala IP Video in a geographically diverse network.
 - Similar to DNS: if I don't have the requested stream, I ask my uppers for it, better known as the Rendezvous Point.

WAN Deployment

Video Lan Client

- Open Source Software (yeah!)
- Complete solution for A/V distribution
 - vls
 - "server", good for serving static content
 - vlc
 - "client" player, also can do streaming
 - vlm
 - "manager", a special invocation of vlc, allows multiple vlc instances to be launched via a network socket.

Video Lan Client

- Compatibility (short list)
 - MPEG
 - AVI
 - MOV
 - DVD
 - Video4Linux

vls

- Streamer for static content
 - Write your config file, launch vls, done.
 - Cannot easily dynamically change content distribution at run time.
- Rigid configuration required with specifics about each content type and distribution options.

vlc

- Client player application
 - Xwindow support
 - Windows support
 - Mac support
 - ASCII support (yup!)
- Excellent CLI
- Excellent GUI, with advanced levels

vlc

- Anything it can play, it can output
 - As a new file format
 - As a network stream (multicast or unicast)
 - Transcode (think AVI to MPEG for an MPEG-only IP set top box)
- Is very good at taking a play list of items (even DVDs) and playing or sending them elsewhere.

vlc examples

- Play a file (list)
 - vlc file1 file2 file3
- Stream a file to another vlc instance
 - Vlc --sout udp:192.168.0.2 filename
 - vlc udp:
- Multicast a file to multiple vlc's
 - vlc --sout udp:227.1.1.1 --ttl 5 --loop filename
 - vlc udp:@227.1.1.1

vlm examples

• Invoke vlm mode vlc

- vlc --ttl 5 --intf telnet

- Stream a file
 - telnet localhost 4212 (password admin)
 - new handle broadcast enabled
 - new handle input /filename
 - new handle output udp:227.1.1.1
 - control handle play

vlc gotchas

- In a router environment, don't forget TTL
- vlc takes a lot of CPU to transcode and then stream. Transcode first.
- vlc can stream just about anything to itself, but use MPEG2 for IP Set Tops.
- vlm offers an http interface, but it is immature at present.
- Interface needs an IP address and default or 224.0.0/4 route

Amino 110 IP Set Top Box

- Nice form factor
- Outputs
 - Composite
 - Svideo
 - RF
 - SPDIF
- Plays MPEG2 up to 8mbps
- Can decode AC3 5.1

Amino 110, hackability

- Runs Linux (yeah!)
- HTML4 browser
- Alpha blending of video vs html
- HTML control of video plays
- Telnet
- Console pins inside
- USB port
- Can mount NFS shares

Links, further info

- Video Lan Client
 - http://www.videolan.org/
- http://www.riverstonenet.com/support/multicast/index.shtml
- Google
 - Multicast
 - IGMP