
Scalable Performance Clustering
State of the Art

and the future

Donald Becker
Scyld Software

A Penguin Computing Company

becker@scyld.com

Presented with MagicPoint

 Definitions

 Cluster:
 A widely used term meaning
 Independent computers
 Combined into a unified system
 Through software and networking

 Cluster Types:
 Scalable Performance Cluster
 High Availability (Fail-over) Cluster
 Resource Access Cluster

 What is Beowulf?

 Beowulf is

 Scalable Performance Clusters based on
 Commodity hardware
 Private system network
 Open source software (Linux) infrastructure

 What is Beowulf?

 Scalable Performance Clusters
 Improving performance proportionally with added machines
 Commodity hardware
 Mass-market, stand-alone compute nodes
 Private system network
 Nodes dedicated to computation
 Predictable, efficient and a simple security model
 Open source software (Linux) infrastructure
 Core software is verifiable

 Why clusters?

 Price for Performance
 Obvious initial reason
 Business market pays for engineering
 Efficient distribution and service channels

 As-need Scalability
 New machines can be automatically added
 New, faster machines can replace older machines
 Architecture and software remains the same
 Investment preserved

 Commodity platforms
 Performance growth rate
 Better continuity and availability
 Long-term viability

 Advantages of Commodity Systems

 Commodity CPUs
 Always available
 Many vendors
 Multiple CPU development teams
 Rapid improvements

 Common environment software
 HPC software traditionally "utilitarian"
 Software differences a barrier to understanding and use

 Very Brief Beowulf History

 Beowulf Project
 The Beowulf Project was started at NASA in 1994
 Beowulf was intended to supplement supercomputers
 "Beowulf" was an apt project name
 Linux continues to be the dominant cluster OS

 Scyld Beowulf
 Scyld was started in 1998
 Redesigned for ease of use and deployment
 Scyld Beowulf is the Scyld product
 Innovative new generation cluster software
 "Scyld" was the father of Beowulf

 Cluster Software

 What is important in a cluster software system?

 Well, what are the problems?

 Complexity
 System management model
 Installation
 First use learning curve
 Applications to use the system
 Tool availability
 Maintenance
 Maturity and continuity

 What is the goal?

 Understanding the goal helps show the path

 Uniform virtual environment
 Single System Image

 Single System Illusion
 Creating the illusion of a single standard machine
 No performance impact allowed
 Changed+simpler is not necessarily simpler

 Previous Solutions

 How have these problems been addressed in the past?

 Classic Beowulf
 Full OS installation on all nodes
 Supports user login on any node
 Administration by scripts
 Consistency and synchronization tools
 Cluster monitoring GUI

 New-generation Solution

 How the world gotten better?

 New-generation Beowulf
 Full OS installation only on "master"
 Compute nodes designed as a computational resource
 Single point administration
 Single point updates
 Single process space view
 Centralized monitoring and job control

 Scyld Beowulf

 A standard, supported Beowulf cluster operating system
 Simplifies integration and administration
 Targeting deployment of complex applications

 What it is not:
 Automatic parallelization
 A new language, or
 An integrated development environment.

 Scyld Beowulf Features

 "Install once, execute everywhere"
 Administration and use is very similar to a single machine
 Dynamically adding compute nodes is fast and automatic
 Scalable to over a thousand compute nodes
 Eliminates software version skew
 Based on Linux
 Open Source software infrastructure

 Design Philosophy and Goals
 Administrators
 Simplicity
 Minimal new cluster-specific tools

 Users
 Application users should not need to know they are on a cluster
 Administration should require little new knowledge

 Developers
 Need to be sophisticated only in application area
 Compile-run development cycle, not compile-copy-run
 Deployment with a single executable

 System Model

 "Master" front-end
 Multiple "Slave node" compute machines
 Booting and configuration controlled from a master

 Master
 Full operating system installation
 All standard tools and utilities available unchanged
 Supports user login
 Provides OS, drivers, libraries and applications
 Slaves
 Tuned kernel
 No required file system
 No user logins or system services
 No required executables!

 Master-Controlled Cluster System Model

 Why this System Model?

 Combines the advantages of
 A standard user environment
 Ability to run unchanged applications
 Specialized compute systems

 Scyld Beowulf Single System Image

 Single Installation
 Single point upgrade
 Kernel, drivers, system libraries
 User applications, user libraries
 No version skew
 Zero-installation scaling
 New nodes take seconds to provision
 Full performance on compute nodes
 File system semantics selected
 At system integration, or
 By administrator
 Unified process space

 Operational Details

 Nodes are added dynamically
 PXE or Scyld Beoboot booting
 Provisioning takes as little as one second
 Next started job may use new node
 A heartbeat is used to detect missing and failed systems
 Immediately removed from scheduling
 Eventually running processes reported as crashed
 Detection of lost system connection
 Compute node default is rebooting after 30 seconds
 Configurable behavior

 Subsystems Overview

 Booting and Provisioning Clusters

 Unified Process Space

 Beowulf Name Services

 Scheduling

 Booting and Provisioning

 Functionality not needed with a grid
 Tightly tied with the architecture and management
 Some systems mistakenly assume it "just happens"
 An opportunity and challenge

 Booting Clusters

 Booting has long been a hot topic
 Various boot media
 Disk-based and Disk-less models
 Safe system software updates problematic
 Multiple reporting points for boot problems

 BeoBoot: Scyld Booting and Provisioning

 Boot requirements
 Reliable network boot
 Dynamic new node addition
 All run-time components from a controlling system
 Configuration from a central point

 Solution
 Unchanging boot code
 Scyld developed BeoBoot Stage 1
 Now ubiquitous PXE network boot
 Flow controlled boot server
 Kernel and minimal system from a boot server
 Configuration and provisioning from a master

 Beoboot Stage 2: Initial Provisioning

 Beoboot has a minimal initial system
 Identifies network devices
 Loads network device driver
 Contacts server for identity information
 Connects to master for configuration

 The magic is...

 This Space Intentionally Blank

 Beoboot Final Stage

 Concept: Configure for specific need

 For a compute node:
 Master sets time of day
 Master mounts file systems
 Master starts any application or services

 Compute nodes with Scyld Beowulf

 Base system model is "diskless administrative"
 Only 10-50MB of required cached data
 Default environment supports most applications
 Visible /lib/* libraries
 /etc/ is mostly empty
 /etc/passwd and /etc/group are not needed!
 /etc/mtab exists only so that ’df’ works.
 Name services (hostname, password) are usually bypassed.
 No /bin or other

 Recommended but optional local disks
 Used for databases and additional caching
 Optionally mounted and checked on startup

 Unified Process Space

 Problems:
 Starting jobs on a dynamic cluster
 Monitoring and controlling running processes
 Allowing interactive and scheduler-based usage

 Opportunity:
 Clusters jobs are issued from designated masters
 That master has exactly the required environment
 We already have a POSIX job control model
 Tight communication

 Solution: A Beowulf Cluster Process Space

 Create a cluster-wide Unified Process Space
 Control processes with a local process table entry
 Forward signals and exit status
 Precise process creation through migration
 Remote fork or execute to create processes
 Implement using checkpoint/restart migration
 Magic trick: make it fast and efficient

 Result
 All jobs appear to exist on the front-end "master".
 Job control and process monitoring work as expected!
 Control-Z suspends all jobs, "bg" starts all running
 The ’ps’ and ’top’ programs work unchanged

 Performance Characteristics

 Start-up
 Under 10 msec. to complete a remote job!
 10X faster than rsh, 20-30X ssh

 No run time performance impact
 System calls and paging are local
 Process status update to master is compact and low-rate
 Only fork(), signals and exit() require a round-trip interaction
 Compare to transparent process migration of Mosix

 How BProc works

 BProc is a "Directed Process Migration" Mechanism
 BProc has architectural elements of
 Remote Fork
 Process migration
 Checkpoint / restart
 Design details
 VMA dump and restart -- essentially "checkpoint" to a socket/stream
 In general, files and sockets are closed
 stdin, stdout, and stderr may remain connected
 Process environment info (process ID) appears unchanged
 Preserves POSIX process family semantics
 Signals (SIG*) are forwarded both ways.
 Slave updates state to master.
 Resource usage on exit

 How can this be Fast?

 Cached libraries ("VMA regions")
 Copy on changed pages in known VMA regions
 Copy unknown VMA regions

 Improvements
 Better dynamic caching of objects
 Caching selection of RAM (default) or local disk
 Pluggable transport selection e.g. TCP or Myrinet
 Detach process and re-master node

 Name Service / Directory Service

 "Name Service" and "Directory Service" mean the same
thing.

 A directory service
 Maps a name to a value, or
 Provides a list of names.

 Specific Examples
 User names
 Password and user information
 Host names
 IP addresses and Ethernet MAC addresses
 Network groups
 A list of similar hosts

 Benefits of Cluster Nameservices

 Why are cluster nameservices important?

 Simplicity
 Eliminates per-node configuration files
 Automates scaling and updates
 Performance
 Avoid the serialization of network name lookups.
 Avoid communicating with a busy server
 Avoid failures from server overload
 Avoid the latency of consulting large databases

 Cluster Name Service Opportunities

 Why can we do a better job?

 Clusters have a single set of users
 User credentials available at job initiation point
 New nodes will have predictable names
 Cluster nodes are granted similar access permissions

 Solution: BeoNSS, Beowulf Name Services

 BeoNSS is a mechanism that
 Caches,
 Computes or
 Avoids name lookup

 Hostnames

 Cluster hostnames have the form .<N>
 Syntax does not conflict
 Compare with DNS and local hostnames
 Special names for "self" and "master"
 Current machine is ".-2" or "self".
 Master is known as ".-1"
 Aliases of "master" and "master0".

 Cluster nodes start at ".0"
 Zero based for flexibility
 Do not assign ".0" for 1-based naming
 Extend to maximum node e.g. ".31"
 Maximum resolvable number defined.

 User Name lookups

 Names are reported as password table entry ’pwent’

 Processes are moved with their user information
 BeoNSS reports only the current user and root
 Cluster jobs do not need to know other users
 Much faster than scanning large lists

 Other name services

 Netgroups to automate file server export security
 Services and Protocols databases
 All common, fixed values
 Frequency of use analysis to select and sort entries

 Scheduling on Grids vs. Clusters

 Similar words and concepts are used
 Opportunities and thus architecture differ
 Clusters support interactive and administrative use

 Definitions

 Scheduling: A combination of concepts about running jobs

 Queuing: Delaying jobs until resources are available
 Backfill: Reordering queue for better utilization
 Mapping: Assigning processes of a job to nodes
 Environment Configuration: Making files, etc. available
 Job Initiation: Creating processes on specified nodes
 Job Control: Stopping, resuming and killing processes
 Reporting: Tracking resource usage and exit status
 Environment Clean-up: Undoing configuration

 Scyld Beowulf Scheduling Support

 Queuing: BBQ, or external scheduler
 Backfill: Only with external scheduler
 Mapping: Beomap, NPR, or external scheduler
 Environment Configuration: Ad hoc, responsibility of job
 Job Initiation: BProc
 Job Control: BProc
 Reporting: BProc
 Environment Clean-up: Ad hoc

 Scyld Scheduling

 Scyld supports external schedulers,

 Differences between Scyld and External Schedulers

 Scyld programs call library functions for a map
 Extensible by dynamic loading libraries into the application

 External Schedulers provide a daemon that schedules jobs
 Extensible by loading dynamic libraries into the daemon

 Scyld Scheduler Interface

 Scyld provides centralized scheduler support

 Use Beostat library
 node capability: processor count, speed, memory
 status: load average, free memory
 Use BProc library for node state
 Node state is up
 Permission for user execution
 Option to force scheduler-only job submissions
 Set node group ownership to scheduler
 Set execute permission only for group

 BeoMap, the Scyld Mapping System

 Beomap is a layered job mapping system
 Programs call beomap functions
 Scripts call ’beomap’ program
 Thin wrapper for mapping function
 NODE=beomap --no-local --np 1
 Mapping interacts with node status
 Node state -- only use ’up’ nodes
 Node information -- need free memory

 BeoMap Implementation Layer

 The BeoMap system allows "pluggable" schedulers
 Looks for system- or user-provided dynamic library
 Library function is passed a key (program name)
 Default scheduler is good for most uses
 Looks for least-loaded nodes
 Prefers grouping processes on SMP nodes
 Sorts node list by node number
 Extended schedulers
 Have access to program name, BeoStat library and BProc state

 BeoMap

 BeoMap: a better approach
 Other schedulers are daemon-based
 Loading dynamic libraries is more efficient and flexible
 Users and administrators may install customized rules
 Complex network topologies may be handled
 Why is this possible in Scyld?
 Kernel-enforced node ownership mechanism
 Invalid mappings simply fail.
 Daemon-based schedulers must be closed systems
 May not execute arbitrary user code
 Must use only their internal statistics and job monitoring

 Using Scyld Beowulf Cluster

 Application Server Cluster

 Compute nodes used as server nodes
 Inverts traditional cluster network
 Server nodes connect to master and Internet
 Master is firewalled by server nodes

 Application Server Security

 Highly Secure Server Nodes
 No network services to exploit
 No OS password information
 No local executables
 Applications "locked" to not migrate from node

 Example Script

 Script Run on master at start
 Uses standard *NIX process concepts

 while true; do

 NODE=‘beomap --no-local --np 1‘
 bpsh $NODE appserver
 logger -t appserver Exited with status $?
 done

 Using Beowulf Process Space (BProc) Calls

 Cluster applications can be very simple.

 Basic call is bproc_move(), bproc_rfork()
 Remote move or fork semantics
 Takes a numeric destination node ID.
 Available node ID may be found from the NPR or beomap library
 Resulting processes controlled with *NIX interface

 See ’modprobe’ for a great example
 Reads dependency file from the master
 Reads kernel symbols from the slave
 Reads driver module from the master
 Loads module into slave kernel

 Pragmatic Issues

 Scyld is a complete supported OS distribution
 Ships as installation/upgrade CDs
 Provides isolation from unexpected "upgrade" changes
 Allows delivering a real cluster OS
 Automated installation part of consistent deploys
 Avoid system changes with re-install
 Don’t confuse installation time with learning!

 Implications of Single System Image

 Single System Image and ad hoc installations are
fundamentally at odds

 One kernel over cluster
 Consider a Filesystem or NIC driver update
 One set of utilities over the cluster
 Node specialization not a conflict with this principle

 Selecting an optimized kernel is not automatic
 Per-machine library and kernel optimizations problematic
 Breaks singles point, single file updates
 Breaks application portability and repeatability

 Node Specialization

 Specialization allowed by
 Specific machine (MAC address)
 Position in cluster (node number)
 Hardware resources
 Heterogeneity support
 Range of support hardware is a common question
 Instruction set must be the same
 Cannot run the application otherwise
 Installed hardware detection is automatic
 Drivers installed based on e.g. PCI ID

 Operation Issues

 Dynamically, automatically scalable
 New nodes assigned a permanent node number
 Based on MAC address
 Manual intervention to renumber
 New nodes take only seconds to provision
 750 msec for base system
 Disk detection and file system mounts extra

 Hardening System Tools

 All system tools should be "hard" and single layered

 Don’t rely on interpreters: "Perl v5.6.1.33 only"
 Reserve interpreters for end site use
 Provide language bindings for system interfaces
 Single layer implementation
 Human-oriented text configuration files
 Trace problems back to the original configuration
 Generated configuration files are a potential disaster
 Libraries, shell, command line and GUI interfaces
 GUIs
 Provide an efficient monitoring interface
 Example: Keep vital state mappable shared memory

 Future

 Even better boot and failure analysis system
 PXE-based CPU and NIC detection
 Complete boot state (failure) reporting
 Environment and kernel fault reporting
 Multiple master architectures
 Different structures are possible
 Automatic detection and configuration needed
 Integrated process mirroring
 Extension to existing migration
 Opportunity with InfiniBand and other RDMA
 Client pull may increases scalability
 Reliability trade-off
 Complete virtual environment creation and mirroring
 Too inefficient today
 Extend process migration to environment migration

 Deployment and Support

 And now the commercial message

 Training available on-site or scheduled
 Northrop Grumman hosts training in D.C. area

 Scyld Beowulf is available on GSA and SEWP
 Integrated clusters, integration services, professional

services

 Penguin Computing provides standard clusters
 Most common commercial cluster deployments:
 AMD Operton w/ gigabit Ethernet or Infiniband
 Intel Xeon on racks or blades

