
A Brief History of UNIX File Systems

Val Henson

IBM, Inc.

vhenson@us.ibm.com



Summary

• Review of UNIX file system concepts

• File system formats, 1974-2004

• File system comparisons and recommendations

• Fun trivia

• Questions and answers (corrections ONLY during talk)

1



VFS/vnode architecture

• VFS: Virtual File System: common object-oriented interface

to fs’s

• vnode: virtual node: abstract file object, includes vnode ops

• All operations to fs’s and files done through VFS/vnode in-

terface

• S.R. Kleiman, “Vnodes: An Architecture for Multiple File

System Types in Sun UNIX,” Summer USENIX 1986

2



Some Definitions

superblock: fs summary, pointers to other information

inode: on-disk structure containing information about a file

indirect block: block containing pointers to other blocks

metadata: everything that is not user data, including directory

entries

3



Disk characteristics

• Track - contiguous region, can be read at maximum speed

• Seek time - time to move the head between different tracks

• Rotational delay - time for part of track to move under head

• Fixed per I/O overhead means bigger I/Os are better

4



In the beginning: System V FS (S5FS) (c. 1974)

• First UNIX file system, referred to as “FS”

• Disk layout: superblock, inodes, followed by everything else

• 512-1024 byte block size, no fragments

• Super simple - and super slow! 2-5% of raw disk bandwidth

5



Berkeley Fast File System (FFS or UFS) (c. 1984)

• Metadata spread throughout the disk in “cylinder groups”

• Block size 4KB minimum, frag size 1KB (to avoid 45%

wasted space)

• Physical disk parameters taken into account

• Much better performance - 14-47% of raw disk bandwidth

• Also 256 byte file names, file locks, symlinks, rename(), and

quotas

6



Improvements to FFS/UFS

• 198?: Logging

• 1991: Improvements to block allocation and read ahead pol-

icy (Larry McVoy and Steve Kleiman)

• 1999: Soft updates (Kirk McKusick and Greg Ganger)

7



Log-Structured File System (LFS) (1991)

• All on-disk data in the form of sequential log entries

• Crash recovery rolls forward from last checkpoint

• 70% of raw disk write bandwidth, but FFS can do as well

• Mendel Rosenblum and John K. Ousterhout, “The Design

and Implementation of a Log-Structured File System,” 13th

ACM SOSP

8



ext2 and ext3 (1993 - present)

• FFS-like, no fragments

• ext3 adds journaling, removes need for fsck on crash

• Primary attributes are simplicity, performance, and recover-

ability

• ext2 often beats all other file systems in performance tests

9



Write Anywhere File Layout (WAFL) (1994)

• Copy-on-write, checksummed, always consistent on-disk for-
mat

• Metadata in files

• Intent log in NVRAM satisfies NFS sync semantics and per-
formance

• Revolutionary and completely underappreciated

• Dave Hitz, et al., “File System Design for an NFS File Server
Appliance,” USENIX Winter 1994

10



SGI’s XFS (1996)

• EFS was FFS with extents - pointers to contiguous lists of

blocks

• XFS adds B+ trees to track free space, index directories,

locate file blocks and inodes, also first 64-bit file system in

wide use

• Focus on scalability and streaming I/O - 90-95% raw disk

bandwidth

• Dynamic inode allocation, logging, volume manager, multi-

threaded read/writes

11



JFS (2000)

• Similar to XFS with fewer B+ trees

• Currently undergoing major hype

12



Veritas File System (VxFS) (c. 1988 - present)

• Version 1: Similar to FFS plus logging

• Version 5: Similar to XFS/JFS

• Main claim to fame: ported to many architectures

• Leader in special purpose performance hacks

13



Reiserfs v. 1 - 4 (c. 1998 - present)

• Designed for good small file and large directory performance

• Constantly changing (4 on-disk formats in 6 years)

• A little of everything: logging, B+ trees, COW, tail-packing

• Second only to ext2 in performance, but poorer recovery

• Understood by few, no good papers

14



Zettabyte File System (ZFS) (2004)

• First fs to improve on WAFL, available in a future Solaris 10

update

• Built-in volume manager, file systems share storage

• First 128-bit file system

• Self-healing data, dynamic striping, multiple block sizes, un-

limited constant-time r/w snapshots...

15



Solutions to common design problems

• On-disk consistency in face of system crash

• Large contiguous allocations

• Metadata allocation

16



On-disk consistency

• Repair after the fact - fsck (FFS, ext2) item Journal replay

- write log, redo writes

• Soft updates - per-pointer roll forward and back

• Always consistent - copy-on-write

17



Large contiguous allocations

• Block clustering

• Extents

• Multiple block sizes

18



Metadata allocation

• Fixed number, all together

• Fixed number, statically spread throughout the disk

• Fixed number, located anywhere

• Dynamically allocated, in files

19



File system feature table

FFS UFS ext2 ext3 VxFS XFS JFS WAFL reiser4 ZFS
Dynamic inodes X X X X X X
64/128 bit X X X X
no fsck on boot X X X X X X X X X
logging X X X X X X X X
always consistent X X
checksums X X
fs snapshots X X X X X X
online resize X X X X X X
fast & reliable X

20



Q&A

vhenson@us.ibm.com

21


