Linux Based Robotics

Wesley Aptekar-Cassels
FRC Team 1678
About 1678
What is FRC?
Season Recap 2015
2016 Game
Talk Summary

● Our Workflow
 ○ Git
 ○ Bazel
 ○ Vim

● FRC Control System
 ○ RoboRIO
 ○ Driver Station
 ○ Field Management System

● Programming
 ○ UnitsCPP
 ○ PID Control
 ○ Lemonscript
 ○ Vision
Our workflow

- Git
- Bazel
- Vim
Our workflow » Git

- Distributed VCS that we all know and love
- Fast branching
- Decentralized
- Various frontends/UIs, most are bad
 - Having a visualizer (gitg, etc) can be good
Our workflow » Bazel

- Build system based off Google’s internal system
 - Open Source
- {Fast, Correct} - Choose Two
 - Only rebuilds needed files
 - Reproducible - Same code, same binary
Our workflow » Vim

- The best text editor
FRC Control System

- RoboRIO
- Driver Station
- Field Management System
FRC Control System » RoboRIO

- Linux-based computer
 - Produced by National Instruments
 - Runs realtime Linux
- I/O
 - Ethernet, USB, PWM, CAN, DIO, Analog Input, I²C, SPI, and more
- Only used for FRC
FRC Control System » Driver Station

- FIRST Provided software to control robot
 - Windows only :(
 - Communicates via wifi/ethernet, custom protocol

- QDriverStation
 - Open source, cross platform (including mobile)
 - Sketchy, not competition legal
FRC Control System » FMS

- System used to control robots at competition
 - One VLAN per team
- FMS communicates with driver station, which controls robot
Programming

- UnitsCPP
- PID Control
- Lemonscript
- Vision
Programming » UnitsCPP

- Unit aware programming
- Compile time errors for unit mismatches
- Different units are different variable types
- Not created by our team
Control theory is an interdisciplinary branch of engineering and mathematics that deals with the behavior of dynamical systems with inputs, and how their behavior is modified by feedback. (Wikipedia)

- How to get from point A to point B
- PID is one of the simplest ways to do this
- Used on drivetrain, arm (pivot), and elevator
Programming » PID Control (cont.)

- **Proportional**
 - Correct for error - just get there
 - Can cause overshoot

- **Integral**
 - Correct for accumulation of error
 - “Integral windup”

- **Derivative**
 - Prevent overshoot/oscillation
 - “Dampen” system
 - Can slow response time
Programming » PID Control (cont.)

\[K_p = 1 \]
\[K_i = 0 \]
\[K_d = 0 \]
Programming » Lemonscript

- Domain Specific Language written by one of our mentors
- Used to tell the robot what to do during autonomous routines
- User defined C++ functions called on runtime
- Has while loops, etc
- Variables Coming Soon™
Programming » Lemonscript (cont)

CheckArmCalibration
SetArmPosition: 4

DriveStraight: 14.0

SetArmPosition: AUTO 3
PointTurn: -15.0

Wait: 1.5

Align
Shoot

Wait: 0.6

AbsolutePointTurn: 0.0
DriveStraightAtAngle: -9.5, 0.0
2016 game has small targets, hard to aim
Computer vision is used to automatically align
Camera + LED ring
Process and get angle on driver station currently, but will move to coprocessor
Find targets/shape detection with OpenCV
Programming » Vision
Any Questions?