
Linux Users’ Group of Davis

C Programming Basics, Part II

Speaker: Mark K. Kim

December 6, 1999

Contents

1 Recap 2

2 Variables—Places to store values 3
2.1 Characters, integers, and real numbers—and many more 3
2.2 Creating many, many variables at once—arrays 3
2.3 String of text . 4
2.4 Pointers . 5
2.5 Mixing pointers and arrays . 6

3 Operators 6
3.1 Logical operators . 6

3.1.1 How logical operations work . 6
3.1.2 The AND and OR operators . 7
3.1.3 The NOT operator . 8

3.2 The bitwise operators . 8
3.2.1 Shift operators . 9

3.3 Shortcut operators . 10
3.3.1 Increment/decrement operators . 10
3.3.2 Self modifying operators . 10

4 More branch statements (alternatives to if) 10

5 More loops (alternatives to while) 11
5.1 do . 11
5.2 for . 11

6 Grouping variables—structs 12

7 Reading options and arguments 12

8 Interfacing with shell scripts 13

1

9 Using headers and libraries 13
9.1 Functions for I/O . 14
9.2 String functions . 14
9.3 Math functions . 15
9.4 Dynamic memory allocation functions . 15
9.5 Conversion functions . 16
9.6 Randomization functions . 16
9.7 Date and time functions . 16
9.8 Miscellaneous functions . 16

A Using printf-family functions 17

B Representing numbers 18
B.1 Floating numbers . 18
B.2 Octal numbers . 18
B.3 Hexadecimal numbers . 19

List of Tables

1 Commonly used data types and their sizes in memory. 3
2 Simple qualifiers. 3
3 AND and OR truth tables for the dog/cat analogy. 8
4 AND and OR truth tables for C . 8
5 Octal-to-binary conversion table . 19
6 Hexadecimal-to-binary conversion table . 20

1 Recap

We learned to write simple C programs in our last discussion. More specifically, we learned
to:

• compile C programs,

• print text and numbers to the screen,

• read numbers from the keyboard,

• repeat a block of codes many times,
(using the while keyword,)

• branch off to different parts of the program depending on the program state,
(using the if keyword,)

• and write customized functions.

In addition, we also learned to use various C functions.
Now, we’re ready to learn various features of C (a.k.a. the “details.”) We’ll also learn to

use several useful C functions not mentioned in our last discussion.

2

Data type Range Description
void N/A “No type” type
char −27 to 27 − 1 Character
int −231 to 231 − 1 Integer

float ≈ 6 digits of precision Real number (decimal point numbers)
short −215 to 215 − 1 Integer
long −231 to 231 − 1 Integer

double ≈ 10 digits of precision Real number

Table 1: Commonly used data types and their sizes in memory.

Qualifier Description
unsigned Doubles the capacity of integers and real numbers, but you lose the

ability to store negative numbers.
signed Undoes the effect of unsigned.
const Prevents the variable from changing.

Table 2: Simple qualifiers.

2 Variables—Places to store values

We often need to store things in memory; perhaps a string of text or numbers.
In C, you generally do not access the memory directly. Instead you tell C what you

want to store in memory, and what you want to call that part of the memory. Then you
can access the memory using that name.

These names you use to access the memory are called variables. What you want to store variables
in the memory—text or number or whatever—are called data types. data types

2.1 Characters, integers, and real numbers—and many more

You can store various types of variables in memory. The most common types of data types
are listed in table 1.

In addition to the data types, you can also add qualifiers to slightly modify the behavior qualifiers
of the data types. Some of the simple qualifiers are listed in table 2.

2.2 Creating many, many variables at once—arrays

Sometimes you want to create many variables at once. Like when you create a database.
Or if you are dealing with a vector of numbers or something.

In those cases, it’s tedious to create many variables one by one:

int age of lugod member1;
int age of lugod member2;
int age of lugod member3;
...

int age of lugod memberN ;

3

That’s a lot of work!
Instead, C can create many variables for you. It’s called an array and it looks like: array

int age of lugod member[N];

Then you can read from or write to any of the elements of the array by changing the index elements
indexnumber inside the brackets, like this:

age of lugod member[0] = 18;
age of lugod member[1] = 21;
age of lugod member[2] = 19;
...

age of lugod member[N-1] = 20;

Notice the first index starts at 0 and the last index is one less than the size of the array.
The arrays are most useful when you are trying to initialize the entire element or print

the entire element. For example,

int i = 0;

/* Set everyone’s default age to 20 */
while(i < N) {

age of lugod member[i] = 20;
i = i + 1;

}

/* I know I’m 21 */
age of lugod member[7] = 21;

/* Print everyone’s ages */
i = 0;
while(i < N) {

printf("Member %i is %i years old.\n", i, age of lugod member[i]);
i = i + 1;

}

You do have to be careful when you use arrays. Because C trusts the programmer to
know what s/he is doing, it lets the programmer access elements beyond the maximum
array length; the effect is usually either corrupted memory or program crash (ever heard of
“general protection fault?”) But this technique can be used to your advantage if you are
careful at using it.

2.3 String of text

If you have an array of characters—it’s just like having a string of text. In C, you treat
character arrays as strings of text (strings of text are often referred to as strings.) strings

So, you can do:

char s[80] = "Hello, LUGOD!";
printf("%s\n", s);

4

(%s can be used to print strings with printf.)
Notice a few things:

• Because strings are actually arrays, you generally cannot copy strings by using the
= operator, and you cannot compare two strings by using the == (or any other test-
condition) operator. Instead, you usually have to copy them character-by-character
(and there are bunch of functions you can use for that—we’ll look at those later.)

There is one exception, however—at the very beginning, when you create the variable,
like we did above.

• With the above program, the string s cannot be more than 80 characters in length. If
you do, you’ll corrupt the memory, and possibly crash the program.

2.4 Pointers

Pointers are a little difficult to explain so I’d like to use an analogy.
Let’s say you and your friend are sitting on the couch, watching the television. Then

your friend asks you where the remote control is. You tell your friend where it is by pointing
to it. Your friend stands up, walks up to the remote control, grabs it, then comes back to
the couch. She/he then changes the channel on the television.

Now, you could have fetched the remote control for your friend but you didn’t. It’s
so much easier for you to point than to actually fetch it. If there were no such thing as
“pointing,” you could probably live without it, but you wouldn’t want to because it makes
your life so much easier.

The same applies to C. The pointer in C exists to point to other variables. And then it
allows you to access other variables through a single pointer.

Pointers are not necessary to write programs, but they makes your life easier from time
to time. . . .

Anyway, the pointer uses two operators—the pointer to operator (*), and the address pointer to
of operator (&). Here is an example program: address of

int i; /* Integer */
int* ip; /* Integer pointer */

i = 5; /* Assign value to i */
ip = &i; /* Point to i */

printf("ip points to %i\n", *ip);

First, you create an integer pointer ip (int* is equivalent to ‘pointer-to-int.’) It can point
to any integer variable.

Then ip needs something to point to, like the memory address of a integer variable.
So you find out the address of the i variable using the address-of operator (&) and assign

that address to ip. Now ip contains the memory address of i.
Now, to access the variable i via ip, like printing the integer ip points to, you need

to find out the value of the integer it points to. So you use the pointer-to operator (use it
like *ip) to find out what ip points to, then you can print that, assign new values to it,
read it, do whatever.

You can also have pointer to functions. We won’t go into that topic since it’s an advanced
topic.

5

2.5 Mixing pointers and arrays

You can also mix pointers with arrays. You can do this by pointing to the beginning of the
array, then accessing the array via the pointer.

With this technique, you can access any portion of the array.
To make a pointer point to the beginning of the array, you do something like:

int iarray[10]; /* Array */
int* ip; /* Pointer */

ip = iarray; /* Point to the array */

Then to access different parts of the array, type:

ip = 0; / same as iarray[0] = 0 */
(ip+1) = 1; / same as iarray[1] = 1 */
(ip+2) = 2; / same as iarray[2] = 2 */
...

3 Operators

C has several types of operators. There are the ones used to do math operations (+, -, *, /,
%,) then there are the ones used to do test conditions (==, !=, <, <=, >, >=,) both of which
we’ve already looked at during our last talk.

Then there are what’s known as the logical operators, that are used for compound test logical operators
conditions (we’ve looked at a couple of them already—&& and ||); and there is also what’s
known as the bitwise operators , that are used to manipulate the memory bit-by-bit. bitwise operators

We’ll look at these two different operators. We will also look at some shortcut operators.

3.1 Logical operators

Logical operators are used in compound test conditions. We’ve already looked at && and ||
operators. We’ll now look at how logical operation is done in C, then look at the ! operator

3.1.1 How logical operations work

When we perform test conditions like “flag == 1,” we produce a result value. The resulting
value is an integer—1 if the test condition is true (if flag is indeed 1,) or 0 if the test
condition is false (if flag is not 1.)

So you can do things like this:

int result;
result = (0 == 2); /* result = 0 */
result = (1 == 2); /* result = 0 */
result = (2 == 2); /* result = 1 */
result = (3 == 2); /* result = 0 */
...

So if you really wanted to, you can do things like:

6

int flag = (2 == 2);
if(flag) {

printf("This always gets printed.\n");
}
if(1) {

printf("Me too!\n");
}
if(0) {

printf("But not me :(\n");
}

In addition, C treats any number that isn’t 0 to be true. So you can use any number in
place of 1:

int flag = -3;
if(flag) {

printf("This always gets printed.\n");
}
if(10) {

printf("Me too!\n");
}
if(0) {

printf("But not me :(\n");
}

But notice you can’t do things like:

int test1 = (2 == 2);
int test2 = 3;
if(test1 == test2) {

printf("This doesn’t get printed.\n");
}

Although you’ll probably never write any code like that, it’s been known to happen in a
complex program.

So if you ever want to compare two test conditions, you have to use something other
than test conditions to test the test conditions. You use logical operators.

3.1.2 The AND and OR operators

The logical operators are called that because it fits our logical concepts. Let’s use an analogy
that uses logical concepts to illustrate.

Say I own one dog but no cat. If a guy named Linus says “Mark owns one dog and one
cat” he would be telling a lie because only the first part of the statement is true (I own one
dog) but not the first part and the second part (I don’t own one cat.) But if he says “Mark
owns one dog and zero cats” then he would be telling the truth because both the first part
of the statement (I own a dog) and the second part (I own zero cats) are true. He can also
say “Mark owns zero dogs and one cat” and “Mark owns zero dogs and zero cats” and the
result would be both false because for “and,” both the first part and the second part of the
statement must be true.

7

Mark has no dog. . . Mark has one dog. . .
(false statement) (true statement)

. . . and one cat false false
(false statement)

. . . and no cat false true
(true statement)

Mark has no dog. . . Mark has one dog. . .
(false statement) (true statement)

. . . or one cat false true
(false statement)

. . . or no cat true true
(true statement)

Table 3: AND and OR truth tables for the dog/cat analogy.

&& 0 1
0 0 0
1 0 1

|| 0 1
0 0 1
1 1 1

Table 4: AND and OR truth tables for C

You can also ask the same questions for “or”: If Linus says “Mark owns one dog or one
cat,” he’d be telling the truth because for “or,” only one of the statements need to be true
(that I own a dog.) You can ask three more questions and you’d end up with two true’s and
one false.

You can make a table out of this. It’s called the truth table and it looks like table 3 truth table
Using 1’s and 0’s (as truths are represented in C,) you get the table that looks like table 4

Note that AND operator results in true if and only if both statements are true; and the OR
operator results in true if either statements are true.

So you can use the table to look-up what the result of a && or || operation is.

3.1.3 The NOT operator

You can also negate the results of a logical operation. For example, “not true” is false, and
“not false” is true.

The operator that presents the concept of “not” logic is the ! operator. Here’s an
example:

int flag = 0; /* flag is false */
if(!flag) {

printf("This always gets printed!\n");
}

3.2 The bitwise operators

Bitwise operators are similar to logical operators—it has the AND operator (&,) the OR
operator (|,) the NOT operator (~,) and a few more operators that have no logical operator

8

equivalents.
The difference is that the truth-table operations are done bit-by-bit.
Say you have an integer 12 (1100 in binary1) and you AND it with 10 (1010 in binary.)

The result is 8 (1000 in binary) because the 8’s digits in 12 and 10 are both 1’s (remember
true and true is true for the and operation—see table 4); the 4’s digits in 12 and 10 are 1
and 0, respectively (1 and 0 is 0;) the 2’s digits in 12 and 10 are 0 and 1, respectively (0
and 1 is 0;) and the 1’s digits in 12 and 10 are 0 and 0, respectively (0 and 0 is 0.)

If you summarize this to a math-arithmetic-looking form, it looks like this:

1100
& 1010

1000

Similarly, with the OR operator:

1100
| 1010

1110

And the one’s-complement operator (I previously called this the “bitwise not operator”):

~ ...00001010
...11110101

(Be careful since it negates all the preceding zeros.)
Your scientific calculator should have the bitwise AND, OR, and NOT operator keys.

3.2.1 Shift operators

In addition to the above bitwise operators, there are also shift operators that “shift” the bits
either to the left or right. The result is equivalent to multiplying or dividing the number by
2 with a few exceptions.

To shift bits to the left, you use the << operator; For example, to shift the number ‘12’
3 bits to the left, you type 12 << 3. The result is 96, equivalent to 12× 23.

1100
<< 3

1100000

If the bits shift too far to the left, you will lose any bits that goes over the maximum limit.
For example, integers are 32-bits on Linux systems, so you can only have up to 32-bits using
integers; beyond that, you will lose the bits.

To shift bits to the right, you use the >> operator. If the bits shift too far to the right,
you’ll also lose those bits as well.

By the way, because the left-most bit represents the negative-ness of the number, you’ll
get weird numbers if you left-shift 1’s into the left-most bit. You’ll also get an unpredictable
result if you right-shift a negative number because the way negative numbers shift to the
right is undefined by the ANSI C standard. The best way to shift numbers, therefore, is to
use positive numbers only by making use of the unsigned keyword.

1If you don’t know what a binary number is, you probably won’t use bitwise operators. But you can
easily convert to/from binary numbers using your scientific calculator—punch in your number in “normal”
decimal integer, then press the “BIN” key (3rd-× on my TI-36X.) To convert back, press the “DEC” key
(3rd-EE on my TI-36X.)

9

3.3 Shortcut operators

Because programmers are such lazy group of people, we have shortcut operators for the
most commonly done tasks.

3.3.1 Increment/decrement operators

To increment or decrement a variable by one, you use the ++ and -- operator, respectively:

int c = 1;

++c; /* Now ’c’ is 2 */
--c; /* Now ’c’ is back to 1 */
c++; /* Now ’c’ is 2 again */
c--; /* Now ’c’ is 1 again */

When you place ++ before the name of a variable (this operator is called the pre-increment
operator ,) the value increments; and then the whole expression becomes the incrementedpre-increment operator
value. When you place ++ after the name of a variable (this operator is called the post-
increment operator ,) the expression becomes that value then increment after. Compare thepost-increment operator
differences:

int c=1, d=1;
int a, b;

a = ++c; /* c=2, a=2 */
b = d++; /* d=2, b=1 */

The same idea applies to the decrement operator.

3.3.2 Self modifying operators

In C, a code like

int c = 1;

c = c + 5;

can be shortened to

int c = 1;

c += 5;

You can also use the same idea for the following operators: -, *, /, %, <<, >>, &, |. (You
can also use it for the ^ operator, which we didn’t talk about and won’t talk about because
it’s not used very much.)

4 More branch statements (alternatives to if)

When you want to branch to different parts of the program, you can use the if statement. branch
But there is another statement that allows you to branch. It’s the switch statement. switch

10

It’s just like the if statements except the syntax is different. switch can’t do everything
if can (if you ever get stuck using switch, you’ll know what I mean,) but you can use switch
to make your code look better.

The syntax is:

switch(value-or-test-condition) {
case case1 :

statements

break;
case case2 :

statements

break;
...
case caseN :

statements

break;
default: /* default action */

statements

}

The value-or-test-condition is compared with each caseN , then the statements are
executed if they are equivalent.

You can use switch to make your program look more organized. Also, sometimes the
compiler can optimize switch statements better than it can optimize if.

5 More loops (alternatives to while)

There are also a few alternatives to the while statement. The two are do and for statements. do
for

5.1 do

The do loop does exactly what the while loop does, except it runs the code inside the loop
once before checking the test condition.

Its syntax looks like:

do {
statements

} while(test-condition);

We won’t go into the details since I know of very few program that use the do loop. But I
like it :)

5.2 for

The for loop is designed to simplify while loop that looks like this:

statement1

while(test-condition) {
statements

11

statement2

}

into this:

for(statement1 ; test-condition ; statement2) {
statements

}

It may seem redundant to have the for loop, but it simplifies things. Think of it as a
shortcut.

The most common for loop looks like:

for(i = 0; i < some-number ; i++) {
statements

}

which makes things look nice because all the terms involving i is on the first line of the
loop.

6 Grouping variables—structs

Sometimes it’s good to group several variables together to give an appearance of “together-
ness.” Like if you want to make a database of LUGOD members, you’d want to group all
information for a single person together.

The keyword used for this purpose is struct. First, you tell C what the grouping looks
like (you place this code before main):

struct Group-name {
variable-type1 variable-name1

variable-type2 variable-name2
...
variable-typeN variable-nameN

};

and then you can create new variables based on this structure like this:

struct Group-name variable-name ;

Member variables are accessed via the member-of operator, the period (.). If you have a member-of
pointer to the structure, you can use the operator ->

Please refer to struct.c for an example.

7 Reading options and arguments

You sometimes give arguments to a program. Like the -a option you give the ls program.
Your C program can read these options and arguments. To do that, you modify main

to look like this:

12

int main(int argc, char* argv[]) {
...

}

When your program runs, argc contains the number of arguments on the command line;
and argv, a string array, contains the argument.

For example, if you run your program like this:

./myprog -la

then argc is 2, argv[0] is ”./myprog”, and argv[1] is ”-la”. In addition, argv[2] becomes
NULL (argv[2] == NULL is true.)2 NULL

On GNU C, there is a command getopt that parses the command line for you so y-
ou don’t have to worry about parsing it yourself. Please read the man page for further
information.

8 Interfacing with shell scripts

The main function also return an integer value to the operating system (i.e. return 0;).
The same is true when you use the exit function to exit the program (i.e. exit(1);).

You can read this value, called exit code, from shell scripts to do different things. Please
refer to Peter’s shell script talk notes for further information.

A note of caution: Most shell scripts assume 0 to be a normal exit code, and other values
to be some kind of error. Programs like make stops processing when one of the programs it
runs returns a non-zero code. So be careful when you exit with non-standard exit codes.

9 Using headers and libraries

There are various headers and libraries you can use with C. There are several standards:

• ANSI/ISO C standard

• POSIX standard

The standard used to program for UNIX-like operating systems.

• GNU extensions

GNU includes several extensions to make open-source and cross-platform programming
easier. The getopt function, for example.

• BSD UNIX extensions

• OpenGroup UNIX extensions

• platform-based standard

Platforms like DOS includes dos.h header file that contains all DOS-based extensions.
X Window includes xlib.h for X Window programming.

2NULL is a predefined pointer you can use to indicate that a pointer points nowhere. Usually, it points
to memory location 0 so you can do an operation like if(pointer) to determine whether a pointer points
anywhere valid (somewhere other than 0.)

13

Due to time constrains, we’ll only briefly discuss some of the ANSI/ISO C standard func-
tions.3

There are only several commonly-used functions listed here, with just the names and
brief descriptions. Please refer to the man page, section 2 or 3 (depends on the usage; check
both), for the details.

9.1 Functions for I/O

The I/O functions can be used to print to the screen, read from the keyboard, or print/read
to/from a file.

Here are some functions you can use to read from / write to the console:

Console I/O (stdio.h)
printf Used to print to the screen
scanf Used to read from the keyboard

To read from / write to a file, you must first open the file, then close the file after you’re
done using it.

While you’re accessing the file, you don’t access the file via its filename. But rather,
you access the file via a pointer to a struct named FILE, that contains various necessary
information about the file. (The pointer to FILE, FILE* is called the file handle because file handle
you use the handle to “hold onto” the file while it’s open.)

Here are the commonly used functions used for file I/O:

File I/O (stdio.h)
fopen Used to open a file for reading/writing
fclose Used to close a file after done reading/writing
fprintf Used to print to a file
fscanf Used to read from a file
feof Used to check whether you’ve reached the end of file

Because UNIX treats everything as files (including the screen and the keyboard,) you can use
the file I/O functions also as screen/keyboard I/O functions. To use file I/O functions with
the screen/keyboard, use the file handle stdin when you want to read from the keyboard,
and use the file handle stdout when you want to write to the screen. You can also use the
file handle stderr if you wish to write to the standard output (also the screen by default.)
Please refer to notes on the shell talk for details on how one can use standard error. You
need not close these handles because C does it automatically.

9.2 String functions

In C, all string access must be done character-by-character. C makes that chore a little
easier by providing several built-in functions:

3Most of the information here was carefully extracted from The C Programming Language by Brian W.
Kernighan and Dennis M. Ritchie, second edition, published by Prentice Hall. ISBN 0-13-110362-8. It is
consider to be the bible of the C language and I highly recommend it. You can purchase a copy at the
UC Davis bookstore.

14

String operations (string.h)
strcpy Used to copy strings
strcat Used to append one string to another
strncpy Used to copy strings up to N characters
strncat Used to append strings up to N characters
strlen Returns the length of the string
strcmp Compares two strings
strchr Finds a character in a string
strstr Finds a string within a string

9.3 Math functions

C also provides several basic math functions. In addition to including math.h, you also
must use the -lm option when you compile your program.

All trigonometric functions use the radian coordinate system.

Math functions (math.h)
sin Used to find the sine of an angle
cos Used to find the cosine of an angle
tan Used to find the tangent of an angle
asin Used to find the inverse sine of a real number
acos Used to find the inverse cosine of a real number
atan Used to find the inverse tangent of a real number
atan2 Used to find the inverse tangent of a real number, compensating

for the 2nd and 3rd quadrants
pow Used to find the power of some number
exp Used to find en

log Used to find the natural log (ln)
log10 Used to find log10

abs Takes the absolute value of an integer
(This function is in stdlib.h)

labs Takes the absolute value of a long integer
(This function is in stdlib.h)

fabs Takes the absolute value of a real number
ceil Rounds up a real number
floor Rounds down a real number

You can round numbers by adding .5 to the real number, then taking its floor.

9.4 Dynamic memory allocation functions

In C, the size of all arrays must be know before you compile the program. If you do not
know the size of the array before you compile it, you must dynamically create memory at
runtime, then use a pointer to read from and write to the memory.

Here are functions that allows you to do that:

Dynamic memory functions (stdlib.h)
malloc Create new memory of size N and returns its address
realloc Resizes an existing memory, either by extending the memory (if

possible) or by creating new memory as necessary
free Destroys the memory so you can use it for something better

15

malloc and realloc will return NULL if you run out of memory, so you should check to
make sure these functions return NULL or not. Otherwise you could either corrupt memory
or crash your program.

9.5 Conversion functions

You can convert between strings to numbers, numbers to strings, a number to a character,
a character to a number, etc. Here are the functions to let you do that:

Conversion functions (stdlib.h)
atoi Convert from string to integer
atof Convert from string to real number
atol Convert from string to long

sprintf Convert from integers or real numbers to string
(This function is in stdio.h)

9.6 Randomization functions

You can produce a series of random-ish numbers in C. Here are the functions to do that:

Randomizing functions (stdlib.h)
srand You must give the randomization function a “seed” with this func-

tion. Otherwise you’ll get the same series of number every time you
use the rand function (this is useful if you’re running a simulation
and want to be able to reproduce the simulation.) Most people use
the computer’s internal clock to randomize the the seed.

rand This function returns a random-ish integer, between 0 and
RAND MAX.

9.7 Date and time functions

Keeping track of the time is useful when you want to slow down your program so it does
not run too fast, or if you wish to keep track of how often your program runs.

Here are some functions to help you do this:

Date/time functions (time.h)
time Returns a struct containing current date/time; for details on the

structure struct, please read the section 2 manpage
difftime Returns the difference of two times
asctime Prints the date/time

9.8 Miscellaneous functions

Here are some miscellaneous functions:

Miscellaneous functions (stdlib.h)
system Executes an external program
qsort Built-in sorting function

bsearch Built-in search-tree function

16

A Using printf-family functions

When you use printf, fprintf, and/or sprintf, you can use %i to print integers, %f to
print floats, etc. You can also type \n to print the newline character. We’ll explore what
other symbols you can use to print other variables and symbols.

Here are the symbols used to print variables:

Symbols to print variables for printf family functions
%c Character
%s String
%d Integer (more common)
%i Integer (less common)
%f Real
%o Octal integer
%x Hexadecimal integer

You can also use the above symbols with scanf-family functions to read values into variables.
Because scanf functions need to write variables, it needs to know the address of the variables
it writes to; therefore you must use the address-of operator when you use scanf, like this:

int i;
scanf("%d", &i);

The only exceptions are the pointers and the arrays—they are variables that hold addresses
to the memory area that scanf writes to, so scanf does not need to know the address of
the pointers or arrays. That means strings, which are arrays, don’t need the ampersand.

You can add modifiers to the above symbols to control how you want the characters to
be printed.

A common one is placing a number between % and the letter to force the output to a
certain width. For example:

printf("4-digit hex number: %04x\n");

The ‘0’ in front of ‘4’ uses 0 as the number padding.
There are numerous other modifiers that cannot be listed all here. Please refer to The

C Programming Language for details.
There are also various weird characters you can work with. They are not for printf

functions but for any string in C in general:

Printable symbols
\n Newline character (to next line)
\r Carriage return character (to beginning of the same line)
\t Tab character
\b Backspace character (back one character w/o erasing character)
\a Alarm (print it to get a beep)
\\ Backslash character
%% Percent character (works only with printf-family of functions, and

it’s only necessary with printf-family of functions)

17

B Representing numbers

You can represent different types of numbers in C. There are decimal integers, reals (floats),
octals, and hexadecimals.

You already know how to read and write decimal integers—0, 1, 2, 3,. . . . And you may
already know how to read and write floating numbers (if you know the e-notation.)

These two numbers exist in C because those are the numbers we use in everyday life.
But. . . computers don’t use decimal (base 10) numbers. They use binary (base 2) num-

bers.
It would be useful to write numbers in binary, though, because it helps us visualize what

computer “sees,” the way computer stores the numbers in its memory.
But large binary numbers are too long to write. So computer scientists created octal

(base 8) and hexadecimal (base 16) numbers, that are multiple bases of the binary, to make
it easier for programmers to write numbers that represent numbers inside the computer’s
mind (memory.)

B.1 Floating numbers

In computers, there is something we call the e-notation. This is a technique used to represent e-notation
numbers in the form a× 10b.

Since printing out a * 10^b (^ is a common notation used to represent “power”) or
a * 10**b (** is a notation used to represent “power” in FORTRAN) wastes too much
screen space, computer scientists made a shorter notation to represent a× 10b, and it looks
like this:

a eb

It is very easy to confuse this with eb. Don’t :)
So to represent 6.02 × 1023 in C, type 6.02e23. Compact, saves memory, everyone’s

happy.

B.2 Octal numbers

Base 8 numbers (called octal numbers because the prefix “oct” means “eight,” just like the octal
prefix “dec” in “decimal” means “ten.”) use only 8 of the 10 numbers in our decimal system.
These numbers are 0, 1, 2, 3, 4, 5, 6, and 7.

Octal numbers are not used very often in C, but it is often used with the UNIX program
chmod. So it is good to know octal numbers. Please read the chmod manual for the details
on the usage of chmod.

Due to time constrains, we will not go into the details of converting between decimal
(standard) numbers to octal numbers, but you can use a scientific calculator to convert
between decimal and octal numbers.4 To convert from a decimal number to a octal number,
type the number you wish to convert to the octal number, then press the OCT button (it’s
3rd-) on my TI-36X calculator). To convert from a decimal number to a octal number, put
the calculator in octal mode by pressing the OCT button, typing the octal number you wish
to convert to decimal, then pressing the DEC button (it’s 3rd-EE on my TI-36X.)

Since we use the octal numbers to make it easier to visualize binary numbers, it helps
to have a octal-to-binary conversion table, like table 5.

4Note: Not all scientific calculators have base conversion keys.

18

Octal Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Table 5: Octal-to-binary conversion table

To represent octal numbers in C, you must precede the number by 0. So, to write 21 in
octal (equivalent to 17 in decimal,) type 021 in C.

B.3 Hexadecimal numbers

Hexadecimal numbers are base 16 numbers that utilizes all 10 numbers in the decimal
system, plus 6 more from the alphabet to make up the 6 numbers (0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F—16 “numbers!”)

To represent hexadecimal numbers in C, you precede the number by 0x. Some examples
of hexadecimal numbers are 0x10 (16 in decimal,) 0x2A (42 in decimal,) 0xFACE (64206 in
decimal,) and 0xDEAD (57005 in decimal.)

You can also use your calculator to convert between decimal and hexadecimal numbers.
Your scientific calculator should have a button labeled HEX (3rd-(on my calculator.) To
type hexadecimal numbers, you can use the keys labeled A-F (3rd and one of 1/x, x2,

√
x,

SIN, COS, TAN keys on my calculator.)
A hexadecimal-to-binary table is given in table 6.

19

Hexadecimal Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Table 6: Hexadecimal-to-binary conversion table

20

